Self-adaptive Middleware Support for loT and CPS

A Systematic Literature Review

MAHYAR T. MOGHADDAM, Univ. Grenoble Alpes, Inria, CNRS, LIG, France
ERIC RUTTEN, Univ. Grenoble Alpes, Inria, CNRS, LIG,, France
GUILLAUME GIRAUD, RTE France, France

This review classifies and analyzes studies on self-adaptation mechanisms for IoT/CPS. The role of middleware
platforms to facilitate such self-adaptation is highlighted. We applied the standard extraction framework
to select 62 papers among 4,274 candidate studies. We further analyzed three CPS4EU project’s industrial
use-cases based on the review outcomes to propose improvement solutions. Main findings are: i) the adaptation
requirement may arise due to changes in system, environment, and their coordination; ii) data-driven proactive
adaptation approaches are newly getting more attention; iii) the potential industrial adoption of middleware
platforms depends on industry requirements and platforms’ design approaches.

CCS Concepts: » Software and its engineering — Requirements analysis; Software configuration management
and version control systems.

Additional Key Words and Phrases: Internet of Things, Industrial Internet of Things, Cyber-physical systems,
Pervasive Computing, Middleware, Self-adaptation, Systematic Literature Review.

ACM Reference Format:

Mahyar T. Moghaddam, Eric Rutten, and Guillaume Giraud. 2020. Self-adaptive Middleware Support for IoT
and CPS: A Systematic Literature Review. In ,. ACM, New York, NY, USA, 35 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION

The Internet of Things (IoT) and Cyber-Physical Systems (CSP) are prominent due to the current
need for massive digitization and opening new market opportunities. IoT/CPS include massive
devices across various domains that are interconnected to exchange data and provide services.
Such domains mainly present intelligent services such as smart buildings [37, 61], smart healthcare
[24, 36], smart grid [12, 35] and smart transport [46]. All the above mentioned I0T/CPS-based
systems are located in the environment with which they coordinate.

Self-adaptation methods equip software systems with capabilities to cope with environmental
and contextual changes occurring in real-time. In real-life IoT/CPS, while all systems are labeled as
real-time, they vary in criticality concerning the real-time attribute satisfaction. Self-adaptation
techniques can guarantee the dynamic nature of real-time collaborative systems. Self-adaptation
is typically performed by control elements that interact with the system components and the
environment to enhance the quality of service (QoS). Self-adaptive IoT/CPS are exposed to challenges
associated with their massive components located in sensing, communication, processing and
storage, and actuation layers [40].

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

The ACM Computing Surveys Journal, CSUR

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00

https://doi.org/10.1145/1122445.1122456

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

The challenges can be due to devices” heterogeneity and the usage of many diverse program-
ming languages, APIs, and protocols. The middleware platforms can support IoT/CPS to perform
quality-driven self-adaptation. Middleware that is run on the processing and storage layer facili-
tates the communication between sensing and actuating components using a set of programming
abstractions. Middleware facilitates the integration and communication of those heterogeneous
components pervasively. IoT/CPS make middleware tasks even more challenging, since their dy-
namic and complex nature may require various levels of middleware distribution and collaboration.
Distribution specifies whether data analysis software should be deployed on a single node or sev-
eral nodes distributed across the system. The collaboration includes interaction among processing
elements that satisfy the system’s goal and strategy. The collaboration may appear as a level of
information sharing, coordinated analysis or planning, or synchronized execution.

Although the middleware support for IoT/CPS has been investigated from more than a decade ago,
the research and industry communities are still trying to define their different aspects, especially
regarding their self-adaptation requirement satisfaction. The reason is that the literature is scattered
across different independent research areas, such as software engineering, embedded systems, and
networking. Therefore, a literature review that classifies and compares various approaches and
methods for understanding IoT/CPS self-adaptation objectives, control mechanisms and middleware
support is still missing. This study identifies current characteristics, challenges and publication
trends, and research gaps concerning self-adaptive middleware support for IoT/CPS approach.

The significant contributions of this paper are:

e addressing to an up to date state of the art class for self-adaptive IoT/CPS and their middleware
support, which can be used as a future research and implementation reference;

e presenting a self-adaptive IoT/CPS conceptual framework by focusing on the role of auto-
nomic and functional control elements;

o classifying various middleware platforms for self-adaptation support;

e analyzing real-life use-cases that can take advantage of our systematic review results.

This study’s audience is both research and industry communities interested in improving their
knowledge and selecting suitable methods to design and develop their middleware for IoT/CPS.

This paper is structured as follows. Section 2 motivates the need for this study. Section 3 reveals
the design of this systematic study. Section 4 presents how this study is structured, and Section
5 gives a short overview of the domain’s publication trends. Sections 6, 7, and 8 elaborate on the
obtained results, while Section 9 runs three horizontal analyses. The discussion by considering
industrial use-cases is presented in Section 10. Section 11 analyses threats to validity, and Section
12 closes the paper and discusses future works.

2 MOTIVATION

This section discusses the motivation for handling our research and its potential scientific value. To
this end, an extensive search has been carried out in Sub-section 2.1 to discover the related reviews.
By comparing this research with already conducted systematic studies in the field, the current
knowledge gap can be discovered. Sub-section 2.2 gives concise reasoning upon the necessity for a
systematic review of self-adaptive middleware support for CPS and IoT.

2.1 Related Systematic Studies

In order to uncover previous systematic literature reviews (SLR) and systematic mapping studies
(SMS) related to this research topic, we performed a search on relevant databases ! using the
following string. To include all related articles, we applied the string on title, abstract, and keywords.

1 ACM, IEEE Xplore, SpringerLink, Web of Science, Scopus, Wiley, and ScienceDirect.

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

(“mapping study” OR “literature review” OR SLR OR SMS) AND (IoT OR “Internet of Things” OR IloT
OR CPS OR “cyber-physical” OR “cyber physical” OR cyberphysical OR pervasive) AND (middleware
OR “middle-ware” OR “middle ware”) AND (“self-adapt™” OR “self adapt™ OR “self*” OR “adapt™” OR
autonomic)

The string aims at discovering any systematic review on self-adaptive middleware support for
IoT/CPS. We included all peer-reviewed systematic reviews and mapping studies that discuss any
architectural, technical, or practical aspects of self-adaptive middleware support for IoT/CPS. Short
articles and papers which present any IoT/CPS aspect other than self-adaptation at the middleware
level were excluded.

We analyzed the search results, but we did not find any systematic study on the topic. However,
six slightly related studies with different scopes have been chosen to be compared with our research.
These studies were selected since they address some aspects of self-adaptation or middleware design
in IoT or CPS. Table 1 shows the existing systematic studies, their focus, and the associated quality
assessment (based on [19, 20]). We calculated the total score of each study [19, 34] by summing up
the answer to each specific question Q1-Q4 (Yes(Y)=1, Partly(P)=0.5, No(N)=0):

e Q1) Are the systematic study’s inclusion and exclusion criteria described appropriately?
o Q2) Is the literature search likely to have covered all relevant studies?

e Q3) Did the authors assess the quality and validity of the included studies?

e Q4) Were the basic concepts and gathered data adequately described?

Table 1. Existing systematic studies on self-adaptive middleware support for 1oT/CPS.

Study Focus Year Q1 Q2 Q3 Q4 Total
Score
1. Self-Adaptation for Cyber- Architectural self- 2016 Y Y Y Y 4

Physical Systems:A Systematic adaptation in CPS
Literature Review [43]

2. Architecting cloud-enabled sys- Cloud-based soft- 2016 Y Y Y Y 4
tems: a systematic survey of chal- ware systems ar-
lenges and solutions [7] chitecture with a

focus on middleware
services

3. Control-Theoretical Software control-theoretical 2017 Y Y Y Y 4
Adaptation: A Systematic Litera- software adaptation
ture Review [59] mechanisms
4. Fog Computing Applications in ~ Various solutions 2020 Y P P Y 3
Smart Cities: A Systematic Survey provided by Fog
[29] computing in smart
cities context
5. A comprehensive and system- analyzing and exam- 2019 N P P Y 2

atic review of the load balanc- ining load balancing
ing mechanisms in the Internet of remarkable methods
Things [51]

6. Service-Oriented Middleware Review on CPS mid- 2012 P P P Y 25
Architectures for Cyber-Physical — dlware and present-
Systems [25] ing a conceptual mid-

dleware design

Research 1 [43] studies state-of-the-art approaches to handle self-adaptation in CPS at the
architectural level. The paper follows a transparent methodology to present a reference three-layer
adaptation model. The most relevant studies are included, and the results are well described. The

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

report analyzes the existing approaches to self-adaptation architecture in CPS to better understand
state of the art and propose various solutions. While the paper considers the use of MAPE-K
(Monitoring, Analysis, Planning, Execution, and Knowledge) loop for CPS self-adaptation, it does
not investigate multiple interacting loops. Furthermore, the authors do not focus on analyzing
novel middleware technologies. Instead, our study widens the scope to IoT and pervasive systems
and proposes a set of middleware solutions for distributed systems.

Study 2 [7] respects all steps of a systematic review from inclusion/exclusion criteria to data
analysis. The paper identifies 44 unique categories of challenges and associated solutions for
architecting cloud-based software systems. The authors suggest that many primary studies focus
on middleware services to achieve scalability, performance, response time, and efficient resource
optimization. The challenge has been observed in various domains, form pervasive embedded
systems and enterprise applications to smart IoT devices. While the paper addresses the use of
Domain-Specific Languages in modeling secure CPS, it ignores suggesting other solutions such
as service-oriented approaches. Our study characterizes device edge and fog as well, which can
enhance the IoT/CPS quality.

Study 3 [59] thoroughly followed the systematic reviews’ steps and protocols. This paper in-
vestigates software adaptation by modifying the software rather than the resource allocated to
its execution. This paper mainly focuses on control-theoretical software adaptation and control
mechanisms. The paper investigates control loops, but it ignores other IoT/CPS middleware aspects
such as requirements, tools, and techniques.

Study 4 [29] follows the systematic mapping study method to obtain an overview of the existing
related research literature on fog and cloud-based smart cities applications. The paper presents an
analytical comparison of related works, the trends, and future research directions on Fog computing.
Our study’s advantage over [29] is that we present our middleware modeling solutions on top of
the perceived knowledge from the reviewed literature and industrial use-cases.

Study 5 [51] respects the systematic review process, such as explaining the research questions
and (partially) addressing the inclusion and exclusion criteria. The paper investigates optimizing
IoT networks’ usage by providing solutions for scalability, routing, reliability, security, energy
conservation, network lifetime, congestion, heterogeneity, and quality of service (QoS). The authors
deal with QoS issues such as latency and data packet loss using the load balancing concept by
distributing loads among different routes. Our study, instead, deals with the QoS at both system
and middleware architectural levels.

Study 6 [25] first present a systematic literature survey of research outputs in CPS middleware
designs i) to present the state-of-the-art, and ii) to bring out some research focus on the issue.
The authors further propose an early conceptual middleware designed with a service-oriented
viewpoint to support CPS applications. Our study includes all architectural styles and patterns that
can be useful for research and industry.

2.2 Need for an SLR on Self-adaptive 1oT/CPS Middleware Support

The need for CPS modeling and development is augmented by the advent of IoT, where the rela-
tionship between physical and virtual worlds plays a fundamental role. This research complements
the existing studies regarding the self-adaptation in IoT/CPS middleware support by introducing a
literature-based classification of the objectives, decision methods, and tools. Although the IoT/CPS
research started with concepts that appeared more than two decades ago, the research and industry
communities are still progressing to define its different aspects effectively. To discover the impact of
existing literature on self-adaptive IoT/CPS middleware support, we identify, describe, and classify
various concepts and techniques used to engineer industry-oriented systems to help practitioners
choose the best platform.

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

3 RESEARCH IMPLEMENTATION

This study has been carried out according to systematic reviews guidelines provided in [19, 20, 32,
33]. In this regard, we formulized our perspective by defining the purpose, issue, object, viewpoint
issues ([66]).
Purpose: to provide a deep understanding of self-adaptive middleware support for IoT/CPS
Issue: by identifying, classifying, and analyzing objectives, decision methods, and tools
Object: based on existing IoT/CPS self-adaptation approaches
Viewpoint: from the research and industry viewpoints.

Such an approach comes as the primary aim of this study since there is no proper overview of
self-adaptive IoT/CPS middleware support, which considers self-adaptive infrastructure and envi-
ronment interaction, adaptation decision methods, and tool support with an industrial orientation.
The overall process can be divided into three main phases ([33], [67]): planning, conducting, and
documenting as thoroughly discussed in the published Protocol. In this paper, we only present the

essential parts of the protocol to tackle the page limit.

3.1 Research Questions

To achieve the research goal, we arranged for a set of questions along with their rationale (Table 2).
The classification resulting from investigating the research questions provides a solid foundation for

Table 2. Research questions and the respective rationale.

Questions

Sub-questions

Rationale

What are the objectives of
self-adaptation in loT and
CPS?

RQ1

What changes in the environment can raise the necessity
of self-adaptation?

What changes in 10T/CPS HW/SW infrastructure can
cause a need for self-adaptation?

How the dynamic coordination and interaction of 10T/
CPS infrastructure and their environment can motivate
self-adaptation?

This research question aims to identify and
categorize the self-adaptation necessities
due to changes in system, environment,
and their coordination. These include
changes in the environmental context and
constraints, hardware layers, software
components and connectors, and
associated requirements.

What are the decision methods

What are the self-adaptation control times for 10T/CPS
applications?

This research question focuses on 10T/CPS
self-adaptation decision techniques, which
imply control over 10T/CPS elements. The

and industry communities for
10T/CPS self-adaptation
support?

satisfy industrial needs?

RQ2 [that can be adopted to realize . .
o techniques can be categorized as model-
self-adaptation in 10T/CPS? X L
. . based, rule-based, data-driven, optimization,
What are the decision techniques that can be used as the o brogram-based. or a mix of them
substructure of 0T/CPS self-adaptation? prog ! :
Are the focus of self-adaptation supports on language [This question deals with various supports for
or middleware levels, or domain-specific applications? |1oT/CPS design and development. The
What kind of models, tools, or subject attempts to»dls;over ex!stmg
latforms are kriown by research . platforms and applications, their features, and
rRQ3|° How can the self-adaptation support platforms their requirements. The focus of this paper is

especially on middleware support. Thus, the

\What range of application domains is addressed by each
platform?

classified state of the art knowledge shall
result in a set of middleware patterns
potentially suitable for various domains.

a thorough identification and comparison of existing and future self-adaptive middleware solutions
for IoT/CPS. This contribution is useful for researchers and practitioners who are willing to further
contribute to new IoT/CPS modeling and development approaches or better understand or refine
existing practices. The research questions listed in Table 2 will drive the whole systematic review
methodology, with a notable influence on the primary studies search, the data extraction, and the
data analysis processes.

https://hal.inria.fr/hal-02948347/document

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

It is worth mentioning that a good search strategy is expected to provide practical solutions to
the following questions: which, where, what, and when [69].

Which approaches? The search strategy consists of two phases: i) automatic search in scientific
databases; and ii) snowballing. The first step is performed using a search string (see below) based
on identified keywords from research questions and areas of study. The search strings are used
to retrieve potential primary studies through web search engines provided by digital libraries.
Snowballing refers to using the reference list of a paper (backward snowballing) or the citations to
the paper (forward snowballing) to identify additional papers [66]. The start set for the snowballing
procedure is composed of the selected papers retrieved by the automatic search, namely the primary
studies, which are selected by applying inclusion/exclusion criteria to the automatic search results.
In any case, the inclusion/exclusion criteria are applied to each paper. If an article is considered to
be included, snowballing is applied iteratively, and the procedure ends when no new papers can be
found.

(IoT OR “Internet of Things” OR IIoT OR CPS OR “cyber-physical” OR “cyber physical” OR cyberphysical
OR pervasive) AND (middleware OR “middle-ware” OR “middle ware”) AND (“self-adapt™” OR “self
adapt™ OR “self*” OR “adapt™” OR autonomic)

Where to search? According to [69], it is essential to search for many different electronic
sources because no single source can find all relevant primary studies. We followed the same
procedure used for other systematic studies, such as [39, 42]. Table 3 shows the electronic databases
that we used for the automatic search as the primary source of literature for potentially relevant
studies on the domain.

Table 3. Electronic data sources targeted with search strings.

Library Website
IEEE Xplore Digital Library https://ieeexplore.ieee.org
ACM Digital Library https://dl.acm.org
SpringerLink https://link.springer.com
Web of Science http://apps.webofknowledge.com
Wiley http:/onlinelibrary.wiley.com
ScienceDirect http://www.sciencedirect.com
Scopus https://www.scopus.com

What to search? A suitable search string is the input to the electronic data sources identified
in the previous section, matching with paper titles, abstracts, and keywords. Following some test
executions and refinements, the search string has been finalized, as shown above. We tried to codify
the string to conform to each selected electronic data source’s specific syntax and criteria. Further,
we combined all studies into a single dataset after the removal of impurities and duplicates.

When and what period to search? We do not consider publication year as a criterion for the
search and selection steps. Thus, all studies coming from the selection steps, until June 2020, is
included regardless of their publication time.

3.1.1 Selection Strategy. A multi-stage selection process (Figure 1) has been designed to give full
control of the number and characteristics of the studies coming from different stages ?. As shown in

21t is worth mentioning that on Springer, we considered “computer science” as the sub-discipline, and on Science-Direct, we
searched titles and abstracts only. These were to avoid a considerable number of false positives results.

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

Selection Criteria Quality Assessment §

Initial S h icati i
nitial Searcl Application & Snowballing ¢

Merge

i 1,485

ACM Digital
Library
IEEE Xplore

IS Web of i 406
Science :

Science
Direct

i4.074

3,518 243 200 : Total

262

2nd Duplication

1¢t Duplication
i Removal Removal

Fig. 1. Search and selection process.

Figure 1, we first applied the automatic search using the previously defined string on the electronic
databases. This step resulted in 4,274 papers, which, after duplication removal, were reduced to
3,518. Researchers independently read the abstract of all studies selected and used the inclusion
and exclusion criteria (Table 4) to filter out irrelevant papers. A paper was included only when it
satisfied all inclusion criteria and did not satisfy any exclusion criteria. The included papers of each
researcher were checked by the others to minimize the bias.

Table 4. Inclusion and exclusion criteria.

Inclusion criteria

Exclusion criteria

Studies that propose modeling and/or analy-
sis and/or development solution, architecture,
method, and/or technique, specific for engi-
neering self-adaptive middleware support for
IoT/CPS.

Studies that, while focusing on IoT/CPS, do
not explicitly deal with their self-adaptive mid-
dleware modeling and/or development aspects
(e.g., studies focusing only on technological as-
pects and inner details of IoT/CPS).

Studies subject to peer review (e.g., journal pa-
pers, papers published as part of conference
proceedings, workshop papers, and book chap-
ters).

Secondary or tertiary studies (e.g., systematic
literature reviews and surveys).

Studies written in the English language and
available in full-text.

Studies in the form of tutorial papers or editori-
als. Because they do not provide enough infor-
mation.

Applying the selection criteria led us to 243 studies. Although all the selected studies were
on-topic, all three of us evaluated them qualitatively. The following quality assessment criteria
were considered:

e QA1) What are the applicability and popularity of the research?

QAZ2) Does the research contain novel and up-to-date methods and solutions?

QA3) How can the research help design self-adaptive middleware solutions and patterns?
QAA4) Is the contribution well established and explained?

QAD5) Is the approach well evaluated?

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Adaptive
loT/CPS

Ao Decision
m Method

HW/SW
Infrastructure

Middleware

Language

Handling changes in

Environment/
Infrastructure
Coordination

Industry
Adoption

Fig. 2. Taxonomy on the covered areas of self-adaptive 1oT/CPS.

The first quality assessment question evaluates if the method presented by a study is widely
applied to other research or industrial cases. The second question rates the studies on the novelty
of their problem-solving processes. This point can compensate for the lack of applicability required
by the first question. The third question assesses the studies’ system architecture to see how it can
support proposing middleware solutions and design patterns. The fourth question analyzes the
appropriateness of contribution, and the fifth question looks into the evaluation presented by each
study. We calculated each study’s total score by summing up the answer to each specific question
Q1 — Q4 (Yes=1, Partly=0.5, No=0).

The quality assessment phase resulted in 59 studies, which increased to 62 by applying the
snowballing process explained in the previous subsection. Among the reasons for which the
snowballing added only a few primary studies, we bring up the effort we dedicated to design an
inclusive search string and a careful selection that included almost all significant studies on the
topic. After selecting a final set of primary studies, the data has been extracted to answer the
research questions.

3.2 Protocol and Replication Package

In order to focus on the result of our systematic studies, we provide the following external docu-
ments:

o A peer-reviewed protocol that clarifies the review process. The document is published on
HAL-INRIA: Protocol. The protocol includes a detailed explanation on search and selection
strategies, external review, and documenting.

e A replication package that is provided to tackle the page limits of a workshop paper:
ReplicationPackage. The package is available as an excel file with different sheets that include

all necessary information such as search results, primary studies distribution, data extraction,
validity examination, and quality assessment.

4 STRUCTURING THE STUDY RESULTS

By analyzing the primary studies, a set of representative concepts have been identified, as shown
in Figure 2. The taxonomy shows various self-adaptation concerns on IoT/CPS. This study’s focus
goes to three main aspects of self-adaptation, namely objectives, decision methods, and supporting
tools. As shown in Table 5, the extracted data has been clustered and classified into data items.

https://hal.inria.fr/hal-02948347/document
https://www.dropbox.com/s/vg1tct0hwycwvxs/SLR%20CSUR%20-%20Replication%20Package.xlsx?dl=0

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

Table 5. Collected data items.

Data Item Data Field Research Question
DI1 Authors Documentation
DI2 Year Documentation
DI3 Title Documentation
DI4 Venue Documentation
DIS Publication Trends Documentation
DI6 10T/CPS environmental context and constriants RQ1
DI7 10T/CPS hardware system RQ1
DI8 10T/CPS software components and connectors RQ1

System goals, functional and
DI9 non-functional requirements RQ1
Coordination among CPS/loT infrastructure
DI10 and the environment RQ1
DI11 Proactive and reactive adaptation RQ2
DI12 Adaptation control and decision models RQ2
DI13 Middleware support for oT/CPS RQ3
DI14 Application domain RQ3
DI15 Industry adoption RQ3

Data items [59] facilitate answering the identified research questions. The subsequent sections
discuss each specified data field by potentially dividing them into subcategories. We here give a
short clarification on each set of data items:

e DI1-DI5. These data items are used for documentation and trends. To realize the publication
trends, we provide the distribution of publications and their types by year and venues.

e DJ6. IoT/CPS environment issues. It includes the environmental context, constraints, and
limitations that might affect the system adaptation objectives.

e DI7. IoT/CPS Hardware system. Extracted data are divided into four subcategories: sensors,

network facilities, computing resources, and actuators. The IoT/CPS might be pushed to

self-adaptation because of changes in its HW system.

DI8 IoT/CPS Software system. Changes in software that is run on hardware can cause an

adaptation need. From software viewpoint, elements are categorized into components and

connectors. The software components are monitoring SW, autonomic control, functional control,
and execution SW. The two mentioned sets of control elements are considered to divide
self-adaptation concerns caused by the system and the environment.

DI9. The functional and non-functional requirements. Violating the system requirements can

lead the system to self-adaptation. Furthermore, some qualities can be affected by the self-

adaptation process. We initially used the specification of qualities described in the ISO/IEC
9126-1standard [5], while focusing on the attributes that our primary studies brought up.

DI10. Coordination among CPS/IoT infrastructure and its surrounding environment. The initial

options for managing such coordination are embedded systems, control of physical systems,

and [oT/CPS distributed systems.

DI11. Self-adaptation time. This answers the question of when the self-adaptation should

take place. In reactive, self-adaptation takes place after the event that causes the need for

adaptation, while in proactive, the system identifies the need for self-adaptation before the

undesired event happens [53].

e DI12. Self-adaptation control and decision technique. This data item deals with the method by
which the self-adaptation should be performed. The decision method can be set based on
various domains and fashions, such as model-based (e.g., model-predictive control, model-
driven engineering, agent-based modeling, and architecture reconfiguration), rule-based (e.g.,
event-based, and reconfiguration rules), data-driven (e.g., machine learning, and reinforcement
learning), optimization-based (e.g., cross-entropy), and program-based.

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Workshop @ @ @ @ @

Book Chapter @
Conference @ ® @ @ 0) @ @

o @ o @ @@@

2013 2014 2015 2016 2017 2018 2019 2020

Fig. 3. Primary studies distribution by publication type.

e DI13. Middleware support. The support to implement self-adaptive IoT/CPS could be in
language, middleware levels, or specific domain requirements.

e DI14. Application Domain. Each middleware will be linked to application domains for which
they are suitable.

e DI15. Industry adoption. This item investigates if the middleware is widely used in the indus-
trial context or not. A discussion on potential industrial adoption will be further provided.

5 DOCUMENTATION AND TRENDS

We extract authors, publication year, title, type, and venue of the chosen 62 primary studies. Figure
3 shows the distribution of self-adaptive IoT/CPS middleware support literature. It noticeably
indicates that the number of papers grows over time, and 90% of articles are published within
the last five years. This result confirms the recent scientific interest and research necessity on
self-adaptive IoT/CPS middleware issues.

The most common publication type is journal paper (30/62), followed by conference (23/62),
workshop (7/62), and book chapter (2/62). Such a high number of journal and conference papers
may point out that self-adaptive IoT/CPS middleware support is maturing as a research topic despite
it is relatively young. Furthermore, we noticed that research on self-adaptive IoT/CPS middleware
support is spread across many venues, mostly in the span of IoT (e.g., WF-IoT and IoTDI), control
(e.g., CCTA), networking (e.g., NOMS), and computing (e.g., SOCA). The complete list of venues
can be found in the data extraction file. The focus on the aspects mentioned above can prove the
significance of distributed control and networking for self-adaptive IoT/CPS middleware design.

6 SELF-ADAPTATION OBJECTIVES (RQ1)

An IoT/CPS should be adapted due to the changes in the environment, the infrastructure, and/or
their coordination. In the following subsections, we thoroughly analyze the elements which can
motivate self-adaptation.

6.1 Environment

An IoT/CPS is situated in the environment. The environment is the real world by which the system
might interact. The environment might include both physical and virtual elements [62], that the
system does not directly control their functionality. The system can perform regardless of changes

10

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

in the environment. However, most adaptive IoT/CPS systems interact with their environment in
an ever-changing manner.

Based on our literature review, most of the primary studies mention that environmental contextual
aspects and the associated constraints and limitations impact the adaptation requirements (P31) [8].
Several contextual dimensions can be considered to define the IoT/CPS surrounding environment:

e The physical context: it relates to information relating to the physical environment, such as
geographic location, temperature, humidity, noise, and light.

e The temporal context: it concerns time-related information that can affect an IoT/CPS.

o The social context: it concerns the direct or indirect interaction of a system with people or
objects located in the physical or virtual environment.

o The computational context: it is related to the external resources available for the system, such
as computing resources, communication bandwidth, and storage resources.

o The historical context: it deals with historical data that can affect the interpretation of infor-
mation or the system operation.

e The profile: it concerns an entity’s preferences for the different contextual dimensions.

A deep understanding of the context is essential for choosing or designing the right IoT/CPS
infrastructure. The lack of a uniform approach for capturing information associated with the
context makes it difficult to fully understand the context model’s needs and design approach
based on its main characteristics. In dynamic IoT/CPS, handling context-aware adaptation by
capturing and analyzing the context within the evolutive environment is complex. A reason is
that the IoT/CPS elements which capture and effect the environment are heterogeneous, regarding
their manufacturers, operating systems, device types, and communication protocols (P62) [50].
Another issue regarding contextual information is that they are often incomplete, temporal, and
interrelated [56]. Thus, contextual reasoning mechanisms should derive a high level, inferred context
from low-level raw contextual information. A reasoning mechanism that provides knowledge for
self-adaptation decision making should also transform, unify, and verify inconsistent contextual
knowledge from imperfect and faulty input.

Although the environmental contextual solutions provided by the primary studies are usually
designed for particular cases by using different approaches, their common characteristics are:

e The context is subdivided into dimensions or attributes that identify the relevant operating
elements of the IoT/CPS, such as time, position, and temperature.

e Measuring various dimensions of the environment should be possible by defining quantities,
units of measurement, and range of permissible values.

6.2 Infrastructure

The I0T/CPS infrastructure consists of various HW and SW elements. Figure 5 shows the adaptive
IoT/CPS infrastructure components. The architecture component includes both HW and SW, which
will be following explained.

6.2.1 Hardware. 10T/CPS hardware architecture can be re-structured in run-time to add, delete,
replace, and combine its elements. The IoT/CPS HW elements include sensors, network facilities,
computation resources, and actuators. IoT/CPS sensors and actuators directly connect with physical
space to gather information and affect the environment. Network facilities can highly impact the
quality of service (QoS) provided by the system, e.g., performance and resilience.

The computation resources can be located on the device, at the network edge, or cloud. Edge
devices are getting increasingly powerful in terms of their hardware specifications. They have
advanced beyond the simplistic notion of collecting and transferring raw data and nowadays act as
fully functional processing units in their own right, widely used as effective computing systems.

11

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

P1, P2, P3, P4, PS, P7, P8, P9, P10, P11, P12, P14, P17, P18, P20, P21, P22, P24, P25, P26, P27, P28, P29, P30,

ACUANOTS p3a, p33, P34, P35, P36, P37, PAS, PA9, PSO, PS1, PSS, PS6, PS7, PS8, PS9, P60, P62

P1, P2, P3, P4, PS, P6, P7, P8, P9, P10, P11, P12, P14, P17, P18, P19, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36, P37, P38,

ComPuting RESOUTCeS b3, pao, pa1, paz, a3, Pad, PaS, Pas, Pa7, Pas, P49, PSO, PS1, PS2, PS3, PS4, PSS, PS6, PS7,

HARDWARE LAYERS

P1, P2, P3, P5, P6, P7, P8, P10, P11, P12, P13, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P32, P33, P34, P35,

Network Facilities o3¢ b3g, p39, pa0, Pa1, Pa2, PA3, Pas, PaG, Pa7, Pas, Pag, SO, PS1, PS3, PS4, PSS, P56, P57, PS8, P59, P6

P1, P2, P3, P4, PS5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33,

Sensors
N9 p3a, p3s, P36, P37, P38, P39, PAD, PAS, P46, P47, PAS, P49, PSO, PS1, PS3, PSS, PS6, PS7, PS8, PS9, P60,

0 10 20 30 40 50 60
PRIMARY STUDES #

Fig. 4. Self-adaptive Systems Hardware Layers.

/ Dynamic 10T/CPS Infrastructure \
sets P

<« inputs
[1
. Goals and .
Autonomic Control - Functional Control
[< |_Requirements Jp,

adapts A nputs inputs commands A

v inputs v Transmit
data to

Architecture 10T Elements
(sensors & actuators)
A affect A
k affects v in W

{if self-adaptive {if self-adaptive] {if self-adaptive
systems} systems} systems}

Dynamic Environment
Including non-controllable software, hardware, network, context

Fig. 5. 1oT/CPS environment, infrastructure, and their coordination.

Pushing the powerful computation resource to the edge can be considered as a way to improve
QoS. Since our literature review focused on middleware aspects of self-adaptive 10T, it is apparent
from Figure 4 that most of the primary studies deal with computing resources (58/62) and network
(54/62). The middleware is traditionally run on computing resources by taking advantage of network
facilities to manage heterogeneous IoT elements. Thus, sensors (54/62) have received equal concern,
while actuators (40/62) were not in the middle of attention across primary studies.

6.2.2 Software. The I0T/CPS software that is run on hardware elements includes a set of compo-
nents bounded by connectors based on specific rules and constraints. Figure 5 shows a model of
IoT/CPS systems that might be in interaction with the dynamic surrounding environment. To realize
such interaction, the system takes advantage of sense and actuate elements. The sense elements
frequently retrieve raw data [1] to input the control components, and actuate elements receive
periodic commands to affect the environment. The mentioned data transmission is continuous

12

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

Chart Title

P2, P4, 5, P6, P7, P8, P9, P10, P12, P14, P17, P18, P19, P21, P23,

I
Rules b5, pas, P27, P29, P36, P38, Pad, PaS, P46, P49, PS2, PS6

P1, P3, P4, PS5, P6, P7, P8, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P36,
P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, PSO, PS1, P52, PS3, P54, PSS, P57, PS8, PS

Interaction

P1, P2, P3, P4, PS5, P7, P8, P9, P10, P11, P12, P14, P17, P18, P19, P20, P21, P22, P24, P25, P26, P27, P28, P29,

EXecualion b3y, p32, p33, P34, P35, P36, P37, PAO, PAS, PAS, PSO, PS1, PSS, PS6, PS7, PS8, P59, P60, P62

P1, P2, P3, P4, PS, P6, P7, P8, P10, P11, P12, P13, P14, P17, P18, P19, P20, P21, P22, P23, P24, P25, P26, P27, P28, P29, P30, P31, P32, P33, P34, P35, P36,
P37, P38, P39, P40, P41, P42, P43, P44, P45, P46, P47, P48, P49, P50, P51, P52, PS3, P54, PS5, P56

Functional Control

P1, P2, P6, P7, P8, P11, P12, P14, P17, P21, P24, P25, P26, P27, P31, P32, P33, P34,

Autenomic Control 5o b7, b3o, pa3, Pa, PaS, PA9, P52, PSa, PS5, PS6, P58, P60, P61, P62

SOFTWARE COMPONENTS AND CONNECTORS

P1, P2, P3, P4, P5, P6, P7, P8, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P24, P25, P26, P27, P28, P29, P30, P31, P32,

Monits
ONOME b33, p3a, p3s, P36, P37, P38, P39, PAO, PAS, PAG, P47, PAS, PAS, PSO, P51, PS3, PSS, PS6, P57, PS8, PSS, P60, P62

0 10 20 30 40 50 60 70
PRIMARY STUDES #

Fig. 6. Adaptive systems software layers.

since the environment is not under full control of the software system, and the dynamics of the
environment should be tackled.

The functional control comprises the adaptation logic that allows the system to perform the in-
tended adaptation within the environment. The autonomic control supports a continuous adaptation
process [54]. It enables the system to monitor itself continuously and perform necessary adaptation
to achieve the adaptation goals. Both control elements take input from goal and requirement [27]
component. A system contains both functional and adaptation goals that are set by stakeholders.
Functional goals specify the system’s functionality under various environmental constraints, and
adaptation goals mostly concern the system’s quality. As shown in Figure 5, the goals might be
affected by the environment. In other words, the environment context might enforce prioritizing a
set of goals or ignoring another set of goals.

Architecture component shown in Figure 5 determines variations in both software and hardware
architectures [42], which include their already explained elements. These architectures are designed
by stakeholders and self-adapted by the autonomic control element during system execution [13]. It
is worth mentioning that, architecture variations might determine multiple functional deployment
types, which appear as architectural patterns shown in Figure 7. The patterns are composed of
IoT elements layer and one or several functional control layers. The functional control can perform
locally and/or centrally and remotely. Here is the point in which a centralized cloud and distributed
edge and fog can form the hierarchical pattern. Thus, the patterns [39] characterize IoT systems
based on their levels of distribution and collaboration [39] [42]. Distribution specifies whether
data analysis software ought to be deployed on a single node (centralized) or on several nodes
(distributed and hierarchical) that are dispersed across the IoT system. The collaboration deals with
interaction among functional control components to satisfy the goals, requirements, and strategies.
This collaboration may appear as a level of information sharing, coordinated analysis or planning,
or synchronized execution [44].

As shown in Figure 7, The centralized pattern comprises processing on a central local or remote
controller. The distributed pattern includes the processing on independent or collaborative con-
trollers. The Hierarchical pattern contains independent or hybrid (i.e., with distributed collaborative)

13

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Processing and storage unit

Remote Functional Control

Local Functional Control > ocessing and storage unit Processing and storage unit:
?

Functional
Control
Layer 1.
loT
Elements

Centralized Collaborative

Fig. 7. IloT architectural patterns based on functional control components composition.

P2, P3, P7, P8, P12, P26, P28, P29, P32, P39, P42, P47,

HIERARCHICAL
Pag, P4, PS5, P57, P58, P61

P1, P4, P10, P11, P13, P15, P16, P18, P21, P30, P34, P38, P41,

DISTRIBUTED | g2, pag, pso, ps1, ps3, psa, ps9, P62

Architectural Patterns

PS, P6, P9, P14, P17, P19, P20, P22, P23, P24, P25, P27, P31, P33, P35, P36,
P37, P40, P43, P45, P46, P49, P52, P56, P60

CENTRALIZED

o 5 10 15 20 25 30
Primary Studies #

Fig. 8. Self-adaptive systems distribution levels.

controllers. As shown in Figure 8, most of the studies (25/62) follow a centralized distribution
pattern, while the distributed (21/62) and hierarchical (18/62) patterns are widely addressed as well.

The self-adaptive IoT/CPS infrastructure explained above contains the mechanisms to determine
the required adaption, based on intended QoS satisfaction level. The next subsection deals with
those quality attributes.

6.2.3 Non-functional Requirements. As mentioned above, the IoT/CPS requirements are both
functional and non-functional, and can necessitate changes in architecture. As shown in Figure 9,
among non-functional requirements, the most recognized quality challenges at both system and
middleware levels are performance (33/62), interoperability (28/62), scalability (17/62), adaptability
(17/62), availability (16/62). Meanwhile, security (15/62), reliability (11/62), and dependability (8/62)
are positioned in a lower degree of concern. Several quality attributes are linked to the main
middleware’s target: supporting large-scale, heterogeneous, and distributed architectures.

e Performance. deals with the system’s response to performing certain actions for a certain
period. The performance level depends on how much the processing and storage components
are pushed to the edge in a decentralized way. The processing location and distribution
impacts the real-time requirement satisfaction on the system as well.

o Interoperability. deals with the system and subsystems collaborative operation as well as
the data transmission with external entities. Interoperability helps IoT/CPS heterogeneous

14

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

Dependability ~ P1, P4, P25, P34, P37, P44, P46, P47
Reliability ~ P7, P8, P12, P19, P34, P37, P38, P42, P54, PS5, P57
Security P3, P4, P15, P17, P18, P24, P29, P35, P36, P39, P40, P41, PSS, P58, P59
Availability p7, P8, P9, P17, P18, P20, P21, P25, P29, P37, P42, P47, P48, P51, P60, P61

Adaptability P1, P3, P4, PS5, P7, P10, P14, P15, P17, P18, P19, P21, P22, P24, P45, P60, P62

QUALITY ATTRIBUTES

Scalability P2, P3, P11, P15, P18, P26, P33, P34, P35, P38, P45, PA8, P51, P52, PS3, PS8, P62
Interoperability P10, P12, P14, P16, P18, P20, P23, P27, P28, P29, P31, P32, P35, P40, P41, P44, P46, P47, P48, PSO, PS1, P53, P54, PS5, P57, P58, P59, P62

Performance P4, P8, P9, P11, P12, P13, P18, P19, P21, P22, P23, P25, P26, P28, P29, P30, P31, P33, P34, P35, P36, P37, P42, P43, P44, P47, P48, P51, P52, P53, P54, PS8, P61

0 5 10 15 20 25 30 35
PRIMARY STUDIES #

Fig. 9. Self-adaptive systems’ notable quality attributes.

components to work together efficiently. It depends on how much IoT/CPS large-scale
heterogeneous devices can communicate directly to gather the required data without going
through the central component.

e Scalability. is the ability of the system to handle load increases without decreasing perfor-
mance, or the possibility to increase the load rapidly. Scalability is an essential attribute since
CPS should perform at an acceptable level with many devices. Scalability depends on how
new resources can be added on demand.

o Adaptability. is the ability of the system to adapt to its own and its environmental situation.
The adaptation that is a kind of system flexibility lets the system structural or algorithmic
variation potentially enhance other attributes. Such an ability to evolve concerns the adapt-
ability of IoT/CPS to new technologies and applications. This can be realized by system
openness to change and extension.

o Availability. is the ratio of the available system time to the total working time. Availability is
the ability of a system to be wholly or partly operational, as and when required. In IoT/CPS,
availability is associated with the processing and storage location and processing power.
For instance, the cloud provides high availability of computing resources at relatively high
power consumption, while fog provides moderate availability of computing resources at
lower power consumption [28].

e Security. concerns the system’s ability to reduce the likelihood of malicious or accidental
actions as well as the possibility of theft or loss of information. Designing a robust, secure,
and efficient IoT/CPS is another issue that necessitates developing novel methods to protect
data against undesired consequences such as cyber-attacks is crucial.

o Reliability. is an attribute of the system responsible for the ability to continue to operate
under predefined conditions. A reliable system can fulfill its task in a given environment,
assuming that the hardware is fault-free and input cases are predefined.

15

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

e Dependability. Dependability and availability are strongly related to each other and against
system failure due to components failure. The IoT devices’ massive scale makes the depend-
ability concern more critical due to external or internal processes that might cause cyber and
physical deterioration.

6.3 Coordination of Infrastructure and Environment

The coordination of IoT/CPS infrastructure and the environment can be in different manners:

e Dynamic environment with static computation infrastructure, as in, e.g., classical hard real-
time systems;

e Dynamic computation infrastructure that does not consider the potential changes in the
environment, as in, e.g., off-line applications like simulation;

e Dynamic computation infrastructure in coordination with the dynamic environment, in more
general IoT/CPS cases.

There are various methods to design the IoT/CPS infrastructure and environment coordination.
We observed that the coordination is carefully analyzed and addressed mostly by distributed embed-
ded IoT/CPS devices that are distributed across the system. As shown in Figure 5, the environment
includes software, hardware, network, and context that are not under full control of a specific
IoT/CPS. However, the system can affect the environment using embedded distributed sensors and
actuators. Embedded systems with specific computing capacity and low energy consumption have
the necessity of being adapted to the contextual situations. Such adaptation need might be occurred
due to various requirements such as changes in the embedded control system’s goal, changes in
the surrounding environment, or changes in the control system itself (e.g., fault recovery).

Answer to RQ1:

The self-adaptation can occur due to changes required in the system, its surrounding environment,
and their coordination. According to our literature-based proposed approach, the system’s architec-
tural changes are handled by autonomic control, while the functional control manages the changes
related to the environmental context. Our study revealed that while most of the primary studies
focus on the adaptation aspects of functional control, the autonomic control topic is recently getting
more attention.

7 SELF-ADAPTATION DECISION (RQ2)
7.1 Time

The time aspect of IoT/CPS adaptation is related to when the adaptation should take place. The
adaptation decision can follow a proactive or reactive strategy. If the IoT/CPS performs adapta-
tion when a goal or requirement is already violated (e.g., a change in the resources or a drop in
performance), it is reactive. If it adapts because of predicting any missed goals or requirements
in the future, it is performing proactively. Users prefer proactive adaptation because of its ability
to avoid quality degradation within the system. However, the proactive feature requires running
complex prediction algorithms that depend on the correctness of entry data as parameters. Thus, a
significant part of our primary studies (59/62) focuses on reactive adaptation. In fact, the monitoring
and execution activities are very much the same in reactive and proactive methods, but the analysis
and planning phases make the difference. Following, we quote examples from the few studies which
address the proactive approach (7/62). It is worth mentioning that some studies (P4, P20, P25, P37,
and P46) use both proactive and reactive decision time.

16

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

e P4.[22] uses machine learning for architectural reconfiguration. They take advantage of
Things]S middleware’s scheduler to predict the execution time of each component. Afterward,
a solver determines the best configuration of components to minimize the execution time
while respecting the constraints. More specifically, each component periodically reports its
performance metrics to the middleware database. The execution time of each component
is predicted using various models. It is worth mentioning that such a prediction process
adopts a feedback loop to be efficiently iterative. By using the mentioned technique, the
run-time self-adaptation can be performed by, e.g., migrating already-executing components
to different devices.

Pé6. [6] uses a live learning process for configuring sensors’ sampling rate and optimizing
network usage. The lifetime of battery-powered IoT/CPS devices can be extended by activating
deep-sleep mode. Machine learning algorithms can optimize the deep-sleep periods by
predicting current or future data traffic values without requiring any sensor network call.
The used approach can facilitate designing a self-adaptive platform that provides both energy
efficiency and data accuracy.

P13. [68] designs a pervasive system in which a self-adaptive temperature control system
can predict the users’ arrival time to a place based on their historical and real-time location
data. Middleware is used to provide interoperability among heterogeneous devices from
different suppliers. All physical devices and external systems have a corresponding virtual
entity in the middleware’s entities pool. When the sensor virtual entity’s status perceives a
new temperature data passing the filter, the message subscription and pushing module will
push the subscribers’ data. The prediction system uses the users’ backing time together with
real-time indoor temperature to determine whether the air conditioning system should be
turned on or not.

P37. [14] equipped their system with predictive modeling and on-line learning abilities to
provide self-modeling abilities in self-aware software on-chip paradigm. They use statis-
tical and neural network approaches such that the model accuracy can be traded-off for
computational model complexity. They use regression-based linear predictors and nonlinear
neural predictors to build models of the system performance, power, and energy consumption
using the cross-layer events, hardware counters, and on-chip sensor data. Such predictive
capabilities can improve autonomy in managing the system resources and assisting proactive
resource utilization in the run-time system.

7.2 Decision Methods

The adaptation control elements need to adopt decision techniques to handle the self-adaptation.
Literature addresses such techniques as model-based, rule-based, data-driven, optimization-based,
and program-based. It is worth mentioning that some approaches used by primary studies fall into
multiple categories of decision methods. The self-adaptation techniques should be chosen based on
the I0T/CPS characteristics such as available data types, functional and non-functional goals, and
adaptation time.

7.2.1 Model-based. In model-based methods, the models which represent the actual system’s
characteristics can provide adaptation solutions. Within model-driven engineering domain, models
are the first entities to describe the software and its environment [18, 55]. Those models could be
advantageous for both design-time and runtime applications. Within the model-based approaches,
the architecture and its reconfiguration techniques can be modeled and analyzed. Several studies
propose the use of software architectures to address IoT/CPS self-adaptation (30/62). An architecture
model provides a global view of the system and its properties and behavior [21]. While architectures

17

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Pa,
P6

Data-driven

P6, P23, P29, P37,

Optimization
P38, P46, P61

P4, P5, P13, P20, P24, P32,

P '
rogram-based o3¢ bas, pso, PS4, PS7, P62

P2, P5, P8, P10, P11, P12, P14, P18, P19, P20, P21, P24, P25, P26,
P27, P29, P38, P44, P45, P47, P48, P50, P51, P52, P56, P58

Rule-based

ADAPTATION DECISION METHOD

P1, P2, P3, P4, PS, P6, P7, P12, P14, P17, P21, P22, P23, P26, P28, P30, P31, P32, P33, P34, P37, P38, P39, P40,

Model-
odelbased o). pa3, Paa, Pas, PA7, P8, Pa9, P51, PS2, P53, PS4, PSS, PS8, P60, P61, P62

0 5 10 15 20 25 30 35 40 45
PRIMARY STUDIES #

Fig. 10. Self-adaptive systems decision methods.

give a global idea of the system, IoT/CPS software systems’ heterogeneity makes it challenging to
design a set of self-adaptation architectural patterns for reconfiguration. Some studies argue that
architectural adaptation includes an architectural model of the controllable software components
that allows the feedback loop to reason about various system configurations and adapt it based on
goals [64].

Feedback loops, which are another sub-category of model-based adaptation decision approaches,
are widely used by the primary studies (17/62). Control loops are introduced to facilitate self-
adaptation by handling changes and uncertainties. IoT/CPS sensors supply raw data (M) to central
or distributed computational components to be refined and analyzed (A) towards further actuation
planning (P) and execution (E). This process within comprehensive knowledge (K) forms the MAPE-
K control loop. Each element of the MAPE-K loop should dynamically react to changes in the
system’s goals and requirements. Works on using feedback control loops (such as MAPE-K) and
their interaction can be presented as patterns [65], in which the functions from multiple loops
are coordinated in different ways. Such interactive coordination mechanisms are indeed crucial to
model ever-growing distributed IoT/CPS systems.

In the agent-based self-adaptation approach, each agent is an autonomous problem-solver able
to operate in dynamic environments. Some agent-based modeling features make it suitable for
engineering self-adaptive systems, namely loose coupling (since they are self-contained goal-
directed), context-sensitivity (since they include a specification of the context), and robustness to
failures (since failures cause reposting the goal without the need for usual complexity of process
failures handling) [11, 63].

Mathematical models of dynamic IoT/CPS can facilitate analyzing the effect of changes on the
system and triggering adaptation reconfiguration [17]. As such, model checking usually use proba-
bilistic algorithms for optimal adaptation decision. It is worth mentioning that model checking
techniques are known to be computationally expensive, since by increasing the number of state
variables, the size of the system state space grows exponentially [26]. Another instance of math-
ematical adaptation that is linked with feedback control loops is control theory. Control theory
proposes a systematic way to design feedback control loops to handle unpredictable changes at
runtime for software applications [16].

18

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

7.2.2 Rule-based. In rule-based approaches, self-adaptation is performed for specific events and
under determined conditions. In other words, rule-based adaptation has a WHEN (event) IF (condition)
THEN (action) form in which events trigger the rules which assess some conditions to act. Rule-based
adaptation has some advantages, such as the readability of adaptation rules and highly-efficient
decision-making for adaptation. It also suffers from some disadvantages, such as lack of guarantee for
optimal or nearly-optimal adaptation results, and weak support to cope with a dynamic environment
and runtime goals [23, 70]. Thus, rule-based adaptation generally supports design-time adaptation,
suitable for static IoT/CPS, with low flexibility regarding system and environment changes.

7.2.3 Data-driven. IoT/CPS sensors gather a massive amount of data that can facilitate proactive
adaptation. A data-driven approach can feed the system with real-time sensory data and prediction
models to draw a system’s behavior and its surrounding environment. Data-driven methods usually
take advantage of Machine learning (ML) techniques. ML is a set of principles, algorithms, and
techniques rooted in statistics to let the systems automatically learn, improve, and perform tasks
without being explicitly programmed, but instead based on the data that it is fed to. ML offers
various approaches, such as supervised learning, unsupervised learning, semi-supervised learning,
and reinforcement learning. Using data-driven approaches can advantage the IoT/CPS quality of
service (QoS) enhancement. ML techniques that can predict QoS degradation and select suitable
preventive strategies are applicable to perform QoS-driven adaptations. Machine learning can be
integrated with the feedback loop approach in analysis and planning steps. ML can help analyze
data to select a set of proper adaptation strategies to be assessed and optimally enforced by the
feedback loop.

7.2.4 Optimization. Some studies utilize optimization algorithms to guarantee optimized func-
tionality and/or quality of IoT/CPS. Self-optimized systems aim to adapt to changes that may occur
in their operational contexts, environments, and system requirements in an optimized manner
[30]. Self-optimization through runtime adaptation guarantees not only the functionality but also
an optimal trade-off among QoS requirements. Thus, the optimization objective seeks ways to,
e.g., improve performance while keeping the reliability and availability at a suitable level. The
optimization algorithm can perform as the core of IoT/CPS software architecture, where functional
and autonomic controllers impact the environment and system situation.

7.2.5 Program-based. The 10T/CPS self-adaptation decision can be made at the program level.
As such, code migration is the process of redeploying software code among hardware resources.
It is actually the activity associated with promoting new and modified code, configuration, and
scripts to support the adaptive system. Another example of program-based adaptation is a protocol
adaptation that is driven and controlled by a specific set of adaptation policies.

Answer to RQ2: The time of adaptation (reactive or proactive) has an undeniable impact on
choosing adaptation decision methods. There are various methods to adopt based on the IoT/CPS
characteristics and adaptation needs, namely model-based, rule-based, data-driven, optimization,
and program-based. Most of the primary studies used reactive model-based methods, while the
community is being oriented to data-driven proactive adaptation approaches.

8 MIDDLEWARE SUPPORT FOR SELF-ADAPTIVE IOT/CPS (RQ3)

The support to implement self-adaptive IoT/CPS could be in language, middleware, or specific domain
requirements. However, the focus of this study is on the middleware approach.

19

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

P4, P5, P18, P24, P32, P36, P42, P43,

Code Management
Pas, P46, P47, P50, P52, P54, P59, P62

P3, P4, PS, P6, P7, P8, P17, P18, P19, P22, P24, P30,

Event M
vent Management o1 p3s, pao, a3, Pas, PA6, P47, PSO, PS1, P56

P1, P4, P8, P10, P12, P15, P17, P18, P19, P21, P24, P31,

R Di
esource DISCOVENY p3a, pa, paa, pas, P51, P53, PS4, PS5, P59, P61, P62

MIDDLEWARE OBJECTIVE

P1, P2, P3, P4, PS, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P21, P22, P23, P24, P25, P26, P27, P28, P29,

Resource Management
P30, P31, P32, P33, P34, P35, P38, P39, P40, P41, P42, P4S, P46, P47, P48, P49, PSO, P52, PS3, PS4, PSS, P57, P58, P59, P60

P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, P21, P22, P23, P25, P26, P27, P28, P29, P30, P31, P32, P33,

Data Management b3y, p3s, p3s, p37, P38, P39, PAO, P41, PA2, Pad, PAS, PAG, PA7, PAS, PAS, PSO, PS1, PS2, PS3, PS4, PSS, PS6

0 10 20 30 40 50 60
PRIMARY STUDIES #

Fig. 11. Adaptive systems’ middleware objectives.

8.1 Middleware Goals

Middleware platforms follow various objectives to provide functional and non-functional require-
ments satisfaction. The middleware non-functional requirements are explained before. Regarding
the functional design, a middleware-based IoT/CPS may address one or several [52] following goals.

e Resource Discovery. IoT/CPS distributed resources, including hardware devices and software
components, are not always available and interoperable. This concept is highlighted when
the system deals with massive mobile nodes which should frequently be added or removed.
Thus, the resource discovery that needs to be automated based on adaptation techniques
should also properly scale, and there should be an efficient distribution of discovery load.

e Resource Management. A proper level of quality is expected for all IoT/CPS applications. It is
also important that applications are provided with service managers. In architecture design
for self-adaptive IoT/CPS, middleware should facilitate automatic resource composition to
satisfy the goals and requirements.

e Data Management. data is a crucial element in IoT/CPS applications that is sensed, propagated,
transmitted, processed, and stored through the system.Data coming from heterogeneous
devices potentially have various types and frequencies. To provide applications that get input
from those devices, middleware should be equipped with fusion and orchestration techniques.

e Event Management. A massive number of events generally generate in IoT/CPS applications.
Middleware is responsible for managing and integrating those events. The event management
that is a part of the analysis process transforms observed events into meaningful events.

e Code Management. Deploying code in IoT/CPS environments is complex and should be
supported by middleware. Code allocation (to select the set of devices to be used to accomplish
a user or application level task) and code migration (transferring one device’s code to another)
services are specially required.

Figure 11 shows the functional objectives adopted by the primary studies. Data management
(59/62) was addressed as the primary concern of middleware design for IoT/CPS, followed by
resource management (53/62). This result shows the challenge behind managing and harmonizing
big data coming from heterogeneous resources. Discovering resources (23/62) is another challenge
that is widely addressed by primary studies. Event management (22/62) and code management
(16/62) has got relatively lower attention as functional objectives of middleware design.

20

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

8.2 Middleware Solutions

Middleware provides common services for applications, eases their development, and makes the
heterogeneous IoT/CPS components transparent for the application layer. In self-adaptive IoT/CPS
domain, many solutions with various design approaches have been used. We classified [52] the
primary studies based on six middleware design categories:

e Event-based. Some middleware platforms provide event-based solution, in which all IoT/CPS
elements, including middleware, interact by events. Events that have a state are propagated
from producers to consumers. The most recognized pattern which falls under event-based
middleware is publish/subscribe. In this method, subscribers can access the data stream
(events) coming from publishers through a database. In our literature review, (11/62) studies
use the publish/subscribe concept: P2, P4, P5, P20, P24, P25, P38, P44, P47, P51, p58.
Service-oriented. Some middleware platforms use service-oriented approach to provide the
applications as service. The service-oriented approach for massive IoT/CPS may be exposed
to heterogeneity, resource-constrained, and mobility issues. However, it supports adaptive
service composition in the case of unavailable services. We observed several primary studies
that use service-oriented approach: P3, P15, P16, P17, P18, P20, P41, P50, P51, P53, P56, P57.
Virtual Machine-based (VM). In this approach, the middleware programming support virtual-
izes the IoT/CPS computation and application infrastructure. The applications have a form
of separated modules distributed over the network as VM nodes. The advantages of using a
VM-based approach include adaptability and transparent inseparability [15]. Within our SLR,
we found few studies which take advantage of the VM-based approach: P2, P4, P8, P20, P29,
and P49.

Agent-based. Some studies (e.g. P18 in our study) apply the agent-based approach to middle-
ware design, in which the distributed mobile agents are used to represent the components of
an IoT/CPS. Agents migrate across the nodes of the network while maintaining their exe-
cution state. The decentralized IoT/CPS design using an agent-based approach can provide
some advantages such as fault-tolerance.

Tuple-spaces. In this approach, each I0T/CPS component holds a tuple data repository that
forms a federated tuple space on, e.g., gateway. The approach suits the IoT/CPS mobile compo-
nents to share data under gateway network constraints. The communication of applications
takes place through federated tuple space by writing and reading intended tuple data patterns.
We found out that studies P34, P38, P50, and P60 use tuple-spaces approach.
Database-oriented. In this middleware approach, the IoT/CPS are seen as a virtual database
from which an application can retrieve intended data. This approach is suitable for distributed
data-oriented systems focusing on interoperability. Studies P10, P13, P15, P17, P24, P31, P35,
P36, P45, P53, and P55 used database-oriented approach.

Application-specific. This middleware focuses on the specific application domain and its
requirements. The architecture designed with this approach well suits the specific IoT/CPS
infrastructure. The studies P3, P8, P16, P17, P21, P26, P32, P54, and P60.

8.3 Middleware Tools

According to our SLR, some middleware proposals have the form of conceptual architectures. Some
others customize their middleware, and the rest design or use reliable middleware platforms that
usually are open-source and can be reused. As the focus of this study, we look more deeply into
the reliable open-source platforms categories that our primary studies use, specify if they are
open-source, and assess their specifications and level of industrial adoption (Table 6). Afterward,
each middleware will be linked to application domains for which they are suitable. It is worth

21

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

mentioning that the other types of middleware platforms (conceptual and customized) are analyzed
in our data extraction form.

DEECO [31]. DEECo (Dependable Emergent Ensembles of Components) is a model and frame-
work for developing complex smart CPS. DEECo provides the holistic view that combines the
goals of a system, the system’s operational model (including real-time constraints), and realistic
communication model (including limited communication and latency). Its main specifications are as
follows: i) is a component-based framework with ensembles for dynamic CPS middleware support;
ii) is mapped to Java via an internal domain-specific language; iii) is implemented via distributed
tuple-space middleware or periodic broadcast; iv) shortcoming: not still industrialized.

LinkSmart [4, 60]. This middleware implements applications that communicate with the gate-
way device to capture, e.g., environmental data. The retrieved data are published by the middleware
to upper layers, and the middleware further receives commands to act upon the environment. The
main specifications of Linksmart are as follows: i) is an ambient intelligent middleware; ii) uses a
lower-level data acquisition component to collect accurate data from context providers; iii) includes
self-management features comprising goal management, change management, and component
control; iv) has four layers: semantic, service, network, and security; v) shortcoming: not very much
applied on real use-cases.

Things]S [22]. Is a Javascript-based middleware and runtime environment to address some QoS
such as dependability, security and interoperability. Its key characteristics are as follows: i) abstracts
large-scale distributed systems considerations, such as scheduling, monitoring and self-adaptation;
ii) uses a constraint model, a multi-dimensional resource prediction approach and a SMT-based
scheduler; iii) suitable to manage heterogeneous IoT devices; iv) shortcoming: not industrialized.

DeviceHive [41]. Is a scalable open-source IoT platform for data collection, processing and
analysis, visualization, and device management. It has a wide range of device integration options.
Three steps should be followed to use DeviceHive, a) creating the instances of the cloud, b) connect-
ing the devices and cloud using a dedicated gateway, ¢) visualizing the data via the web. Its main
characteristics are: i) ease of installation, the rich documentation and the high integration with a
wide range of programming languages and IoT protocols; ii) is designed with security approaches;
iii) supports public and private clouds and hybrid deployment; iv) has container-based service-
oriented architecture approach with linear scalability, managed and orchestrated by Kubernetes for
production loads; v) shortcoming: measurement data on the device is cached, so the data will be lost
when the server is restarted.

Eclipse OM2M [2, 3, 46, 47]. Is an open-source middleware layer that provides a RESTful API for
XML data exchange through even unreliable connections within a highly distributed environment.
Among its characteristics, we highlight the followings: i) provides a horizontal Service Common
Entity (CSE) that can be deployed in an M2M server, a gateway, or a device; ii) is built as an Eclipse
product using Maven and Tycho; iii) shortcoming: lack of supported protocols and localization
management.

Open-HAB [57, 58]. Is mostly used for smart home applications to control different systems
in one single graphical user interface or app. OpenHAB can connect and communicate with
heterogeneous IoT/CPS devices through its binding connection modules. Users can define flexible
logic rules using a rule engine that commands the IoT/CPS devices. It notably: i) has pluggable
architecture which supports different technologies, systems, and devices; ii) has flexible engine to
design time and event-based rules; iii) runs the users’ server on various operating systems to be

22

https://www.dropbox.com/s/wydwvrawy6mmgat/Rep.%20Package%20-%20Self-adaptive%20Middleware%20SLR.xlsx?dl=0

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

accessed by mobile and web apps; iv) shortcomings: little support for Wi-Fi devices, and difficult to
transfer between web and file system settings.

OpenloT [4, 48]. Enables the unification of diverse IoT applications at the cloud level. It provides
an integrated development environment for managing mashups of the available IoT services. Its
significant specifications are as follows: i) provides semantic interoperability in the Cloud; ii)
applies the Semantic Sensor Networks (SSN) ontology for semantic unification of IoT systems;
iii) its architecture has seven elements, including a sensor middleware, cloud data storage, and
scheduler; iv) shortcoming: uses a virtual sensor approach in which data are still provided to the
application, even if the service is not available, which can lead to the delivery of out-of-date data.

CHOReOS [48].1s a service-oriented middleware which consists of mechanisms that facilitate the
access to services, the discovery of services, and the composition of services. Its key specifications
are as follows: i) enables large-scale choreographies of adaptable, QoS-aware, and heterogeneous
services; ii) relies on development of a composed service, based on the choreography of services;
iii) shortcoming: service composition component is aimed for a specific application in their project.

GSN [48]. Is a middleware designed to facilitate the deployment and programming of sensor
networks. Its design follows four main goals, namely simplicity, adaptability, scalability, and light-
weight implementation. GSN is mainly characterized as follows: i) provides dynamic adaption of the
system configuration during operation; ii) uses a container-based approach, which allows different
sensors to be easily identified; iii) network analysis techniques can be applied; iv) shortcomings: a)
does not cover the interoperation and context awareness; b) sensor search functionality problem
by scaling the connected sensors.

UBIWARE [48]. This middleware consists of several agents and agent types with specific set
of tasks. A group of agents is associated with running the platform, and another group takes
care of applications and users. The most significant specifications of UBIWARE are as follows: i)
is agent-based and provides a platform for the development of self-managed complex industrial
systems; ii) integrates Ubiquitous Computing with Semantic Web to address IoT requirements; iii)
shortcomings: a) there is just one agent to manage all the requests; b) there is a huge number of
messages that the process generates.

M-Hub [24]. The Mobile Hub (M-Hub) is a general-purpose middleware that enables mobile
personal devices to become a gateway for the lower level IoT devices. Its most recognized spec-
ifications are as follows: i) is a general-purpose middleware; ii) enables mobile personal devices
to become the propagator nodes; iii) provides context information such as local time, date, and
location; iv) shortcoming: lack of significant applications.

JCL [9]. Is a distributed lightweight Java-based middleware that supports a collaborative multi-
developer cluster environment where applications can interact without explicit dependencies. Its
other key characteristics are as followed: i) incorporates a single application programming interface
to program different device categories; ii) provides the interoperability of sensing, processing,
storage, and actuating services; iii) facilitates the integration with MQTT technology; iv) allows
enabling/disabling data encryption through API, during code execution; v) shortcoming: not properly
evaluated.

Xively [9]. Uses a central message bus to route the message from devices to other components.
The middleware is cloud-based and provides many development tools and resources for supporting
developers to connect and obtain data from their sensors. The specifications are as follows: i) is
a data-driven platform with the ability to give fine-grain access to data streams and data feed;

23

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

ii) has additional services which allow for business services, systems integration, and business
opportunities for companies; iii) shortcomings: a) very limited extensibility models to incorporate
new capabilities into the platform, b) cloud-only model limitations.

Table 6. Open-source [oT/CPS Middleware platforms used by the primary studies.

Middleware Associated Studies ~ Language Open- Industrial ~ Used Domain
source Adoption

DEECO [31] P1 Java Yes No Smart Parking

LinkSmart [4, 60] P3, P51 Python Yes Yes Smart Home

Thnigs]S [22] P4 Javascript Yes No Smart Home

DeviceHive [41] P5 Python, Yes Yes Smart Cities, Automo-
Javascript tive, Energy

Eclipse OM2M [2, 3, P8, P12, P21, P26 Java Yes Yes Monitoring, Smart

46, 47] Cities

Open-HAB [57, 58] P17, P60 Java Yes Yes Smart Home

OpenloT [4, 48] P18, P51 Java Yes Yes Smart Cities, Mobile

Crowd Sensing, and
Assistance Living

CHOReOS [48] P18 Java Yes Yes Smart Home, Smart En-
ergy, Smart Health
GSN [48] P18 Java, Scala Yes Within Smart Cities
the
project
UBIWARE [48] P18 S-APL Yes Yes Industrial systems,
Smart Cities
M-Hub [24] P19 Java Yes Yes Healthcare
JCL [9] P59 Java Yes No Smart Home
Xively [9] P59 Java, Javascript, Yes Yes Smart Cities, Smart
Python, C++ Home

8.4 Industrial Adoption

This section assesses the primary studies’ evaluation approaches to learn their maturity level,
industry participation, and tool specification [10]. The focus of this section is on self-adaptive
middleware support for industrial IoT/CPS.

Readiness Level. As suggested by [10, 38, 45], the maturity of research can be assessed in a three-
level scale: i) low: the study is formulated, validated, or demonstrated in a lab-based environment;
ii) medium the study is validated or demonstrated in an industrial context; iii) high: the study
is completed, demonstrated, or proven in the operational environment. Our SLR reveals that in
self-adaptive middleware for [oT/CPS domain, several studies (11/62) are not adequately validated.
However, several studies have the medium (29/62) or even high (22/62) level of maturity. As shown
in Table 6, several papers provide middleware platforms that are widely proven in the operational
environment. This emphasizes that self-adaptive middleware for IoT/CPS is going towards maturity
regarding technology transfer to industry.

Industry Involvement. Several conferences and journals dedicate industry-oriented tracks and
issues to encourage industrial partners’ involvement in producing articles. We consider a paper as
pure academic if all authors come from universities and research institutes, and industry touched if
at least one author affiliated by a company is among the authors. We observed that several studies
(10/62) confirm knowledge transfer among researchers and industrial communities.

24

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

Tool Support. We categorized the tools as conceptual, customized, and operative. Table 6 shows
the operative open-source tools, which are part of the last category mentioned above. Overall,
(52/62) provided a kind of tool to evaluate their research approach, from which 29 tools were
operative, 13 tools were customized, and 10 tools had a conceptual form. This result shows that
while the IoT/CPS self-adaptive middleware tools have a high-level maturity to be operational, they
are mostly specific to projects and use-cases and require additional development efforts.

Open-source. We found 16 open-source middleware in our SLR, from which 13 platforms with
solid documentation and reliable source-code are shown in Table 6. As specified in the table, some
middleware platforms are used by several primary studies, and some are only used within a project.
In the following sections, we discuss how the primary studies’ reliable open-source middleware
platforms can benefit industrial use-cases with different characteristics and adaptation needs.

Application Domains. As shown in Table 6, the self-adaptive middleware domains span from
smart cities and smart buildings to e-healthcare. Despite that most of the use-cases presented
by the primary studies deal with pervasive systems, some address industrial CPS, smart energy,
and IoT-based automotive systems. We noticed that various application domains have different
quality requirements. For instance, while smart production systems need a high dependability
level, intelligent monitoring needs an adequate level of performance, and smart homes require low
energy consumption. Therefore, the application domain can drive both the software architecture
and middleware design.

Answer to RQ3: The primary studies significantly investigate middleware support for self-
adaptation. Middleware platforms can have various goals, such as managing and discovering
the IoT/CPS resources, managing the data perceived and transmitted by heterogeneous IoT/CPS
elements, managing events generated by IoT/CPS applications, and managing the code allocation
and migration. The solutions corresponding to those objectives might follow various methods based
on events, services, virtual machines, agents, tuple spaces, databases, and applications. Middleware
platforms’ potential industrial adoption depends on industrial use-cases’ adaptation and functional
requirements and middleware design approaches.

9 HORIZONTAL ANALYSIS

This section reports the results orthogonal to the vertical analysis presented in the previous sections.
For this section, we cross-tabulated and grouped the data, we compared pairs of concepts of our
classification framework and identified perspectives of interest.

9.1 Architectural Distribution Patterns VS Quality Attributes

Here the question is “Which IoT quality attributes should remarkably be assured to design an ap-
propriate [oT pattern?”” A software architecture distribution pattern over another exposes specific
quality attributes for the IoT/CPS. As shown in Figure 12, a hierarchical design is the best option to
address availability, security, and reliability. In general, a hierarchical architecture could reduce
the risk of a single point of failure. If one fog node fails, the IoT/CPS can shift the computation
to another fog to keep the system operational. The global control of the hierarchical pattern can
facilitate security aspects as well.

Within our SLR, the distributed architectures best guaranteed interoperability, scalability, and
dependability. In IoT/CPS applications with heterogeneous static and mobile elements, the system
should ensure the possibility of adding new devices which can faultlessly communicate with other
resources. Furthermore, several studies used a centralized pattern to guarantee their performance
and adaptability requirements. While using a centralized local processing element can avoid network

25

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Hierarcnical ‘ @ O @ @ @ o)
“ @ o 6 o 6
‘ ® ® @ o0

ity Scalability il ilabili Security Reliability Dependability

Distributed

Architectural Distribution Patterns

Quality Attributes

Fig. 12. Architectural distribution patterns VS quality attributes.

Data-driven @D D
Optimization @ 10}
rogramsnsed (D) @@ o (@ 0

Adaptation Decision Methods

—— O ® o 0 0 06
® 6 oo @

Event- Service- VM- Agent- Tuple- DB- App-
based oriented based based spaces oriented specific

Middleware Solutions

Fig. 13. Adaptation decision methods VS middleware solutions.

delays, it might instead cause computation delays. Assessing the trade-off between a centralized
approach and adaptability depends on the application domain and shall be further investigated.

9.2 Adaptation Decision Methods VS Middleware Solutions

Figure 13 shows adaptation decision methods adopted by various middleware solutions. As previ-
ously mentioned, the event-based middleware interact by event[condition]/action adaptation rules
with potentially using publish/subscribe models. Furthermore, service-oriented and virtual machine-
based middleware approaches take advantage of rule management containers for adaptation. In
agent-based middleware, the distributed mobile agents follow some contextual and behavioral
rules to adapt and migrate across the network. The figure shows that tuple-based and data-based
oriented middleware solutions follow either program-based or rule-based adaptation models, and
application-specific solutions mostly deal with model-based adaption techniques.

26

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

. @0 o O)
N e O R O o e O R ©)
o
o
o
[

Pmnl O ® o0 o o @O
E

s, @ ® o O ‘@

- 9@ - - @O

Event- Service- VM- Agent- Tuple- DB- App-

based oriented based based spaces oriented specific

Middleware Solutions

Fig. 14. Middleware goals VS middleware solutions.

9.3 Middleware Goals VS Middleware Solutions

Figure 14 shows the relationship between middleware goals and solutions. Raw data collected by
IoT/CPS sensors should be filtered, aggregated, and analyzed. Data management is mainly linked
with service-oriented and database-oriented solutions. The cost of data transmission compared
with local processing should also be well evaluated for various application domains. In IoT/CPS,
conflict among different types of sensory data and corresponding databases is undeniable. Such
disharmony can happen in other resources as well. Thus, conflict resolution is often required to
resolve conflicts in resources utilized for multiple services. A way to deal with such conflicts could
be using agent-based cooperative solutions [52]. From the relation between resource discovery
and database-oriented solutions, we understand that number of registries and registry distribution
should have a trade-off. While a centralized registry and discovery approach can provide consistency,
it can suffer from scalability issues. Besides, since many events are generated in IoT/CPS, the
middleware service might become a bottleneck point in both processing and storage dimensions. As
a final point, IoT/CPS should support code allocation and migration. Despite that management and
event-based solutions are perceived to be correlated, virtual machine-based and application-specific
middleware solutions offer support for code management.

10 DISCUSSION CONSIDERING SOME INDUSTRIAL USE-CASES

From the literature reviewed above, we understood that self-adaptation and its support could
be well-adopted by industry. Taking advantage of some real-life industrial use-cases within the
CPS4EU project 3, we analyzed their functionality and quality requirements and their decision
support potentials towards self-adaptation.

3Part of the use-cases’ explanations comes from CPS4EU deliverable. CPS4EU is a three years project funded by the H2020-
ECSEL-2018-IA. The project develops four vital IoT technologies, namely computing, connectivity, sensing, and cooperative
systems. It incorporates those IoT technologies through pre-integrated architectures and design tools. It instantiates the
architectures in dedicated use-cases from a strategic application viewpoint for automotive, smart grid, and industrial
automation. https://cps4eu.eu

27

https://cps4eu.eu

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

10.1 Case 1: RTE Smart Grid System

Renewable energy systems that convert wind and sun into electricity are growing as the primary
electricity source. Such renewable generation is mainly connected to the distribution grid but
impacts the transmission grid as well. Considering the RTE case, some areas of the grid include
many wind-farms as sources of energy, so if a strong wind blows and the generation becomes
excessive, an overload will occur on transmission lines. Therefore, to avoid the risk of overloading
the lines and creating danger for goods and people’s safety, the peak current has to be managed.
Instead of developing new power lines, the French Transmission System Operator’s policy, called
optimal development, investigates new exploitation methods of the existing electrical installations
and favors their optimal operation. Wind-farm generation can be limited by opening their feeder’s
circuit breaker, or more efficiently, by modulating their generation. Additional means can also
be used, such as batteries, power electronics, and IoT. Dealing with transmission overload risk
necessitates considering some information from sensors such as values of currents and voltages on
every line, state of the network circuit breakers, and state of battery’s charge.

Non-functional Requirements. Dependability: the system should be tolerant to faults which
might happen in sensors, controllers, and actuators nodes. A dependability requirement is that
no more than one unwanted order to the actuators shall be sent every ten years. Furthermore,
the system should guarantee the availability in 99.9% of operation time. Performance: modulating
wind-farms’ generation is a solution exposed to a high actuation time when batteries can store
electricity in a few seconds. Thus, the system needs to make quick decisions to keep the performance
within an acceptable threshold. More precisely, the calculation shall occur in less than 2s. Security:
Security requirements are related to both the facility that houses the system(s) and the operational
security requirements of the system itself. In RTE’s operating system level, the use of a secured
Linux CentOS (7.4) is mandatory. In the identification process, the use of the RTE industrial Active
Directory is mandatory. For the event log, a log shall trace all events linked to identification, access
control, resource access, and operation.

Adaptation decision technique proposal. Architecture reconfiguration: In order to keep the
mentioned non-functional requirements in a proper threshold, the CPS might need to perform
self-adaptation at the architectural level [42]. RTE uses a traditional central architecture that can
be enhanced to a hierarchical pattern with distributed collaborative controllers that can turn
into centralized or distributed patterns if needed. The control algorithm can be run on gateways,
local server, or the cloud. The dynamic architecture adaptation scenarios should be simulated to
provide more detailed proposals on the pattern’s suitability. MAPE-K loops: The MAPE-K logic is
proposed to be used in architectural reconfiguration. The functional and autonomic controllers
can take advantage of MAPE-K control loops to ensure the functionalities and intended qualities.
The functional controllers use the MAPE-K loop to sense and affect the environment towards
goals. The autonomic control elements adopt a MAPE-K loop to assess the conformity between the
architectural components, including functional controllers’ situation and goals.

Middleware proposal. RTE intends distributed implementation using middleware that should:
i) use REST API to exchange data with the central controller, ii) communicate with gateways,
sensors, remote transmission units, battery management system, generators, and distribution
system operators.

Middleware Goal. Resource management: based on the requirements mentioned above, resource
management is the key objective of using middleware. Distributed and heterogeneous sensors and
actuators should be managed in a way to enhance quality attributes. Data management: the RTE
smart grid case takes advantage of various data sources. As an example, current values are read
every second at each end of the transmission lines. This various data source for a unique decision

28

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

necessitates precise data filtering and fusion to be performed by middleware. Event Management:
as we mentioned above, the middleware ought to react and adapt the system to sudden events, e.g.,
excess of current on the transmission lines.

Middleware Method: Event-based: in the event-based method, the components with various
states interact with events. In the RTE case, various modes specify the state of control elements.
For instance, activating circuit breakers in a critical environmental situation requires the normal
calculation of levers’ usage or data-driven generation prediction. Service-oriented: from another
point of view, various applications can be defined as services. For instance, a service could be
providing situational awareness to operators by a dashboard, and another could be saving electricity
in batteries.

Tool proposal. Open-HAB: we suggest using Open-HAB since it supports the adaptation of
event-based systems. Furthermore, the RTE system does not need for device discovery using Wi-Fi.
DeviceHive: is validated in the smart energy domain. It enhances security and provides data insights.
It also enables the practical usage of resources and allows a faster and more flexible self-adaptation.

10.2 Case 2: ACOEM Smart Cities System

IoT/CPS are used to provide urban security, which involves monitoring crowds, cars’ congestion, and
air quality. The concept of distributed collaborative sensor networks is generally used for such smart
city applications. In the ACOEM case, the sensors network’s purpose is to provide a well-being index
to the population and the city’s safety aspect. The two main applications developed in this case are:
i) Environment Quality Index, and ii) Geo-localized threats alerts.Traditional environmental quality
systems need expensive metrological stations. Thus, establishing many of those infrastructures to
provide local information is unfeasible. ACOEM aims to develop environmental pods to measure
different pollutants. With specific data analysis on the measurement performed by the pod network
installed in a city, it is possible to increase each pod’s accuracy and understand the origin of
the pollution. This service’s critical point is to provide accurate and local measurement with a
cost-effective network of pods.

For the threat alert system, the system detects an abnormal situation in real-time, identifies the
threat (e.g., gunshot), and provides the sound origin’s azimuth/elevation. When an abnormal noise
is detected, many parameters are computed based on the audio signal. All these parameters are the
inputs of a neuronal network specially trained to identify a gunshot. This neuronal network can
realize the difference between, e.g., a firecracker, a nozzle gunshot noise, and a supersonic bullet
noise. To train this neuronal network, a gunshot database from a defense product experience was
used. Self-adaptation plays a substantial role in both mentioned ACOEM services. In both systems,
the system architecture can be switched in run-time to provide better quality. The system goals
might enforce data analysis sometimes on the device and some other times at the network edge or
cloud.

Non-functional Requirements. In smart IoT/CPS with a lot of sensory nodes, scalability,
performance, dependability, and energy efficiency are among important requirements. The system
must be open to scaling with new static and mobile sensors and, consequently, computation
resources. Scaling the system should keep the performance in an acceptable range. Especially in
threat alert service, the system response time should be kept small to be compliant with real-time
requirements. The system should also be dependable so that faulty nodes do not impact its operation.
Since many IoT/CPS resources are battery-powered, energy efficiency is another concern.

Adaptation decision technique proposal. We propose architectural reconfiguration, which
adopts feedback control loops to decide the combination of computation elements dynamically.
Based on the threat alerts system’s specification, it requires a data-driven approach as well.

29

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

Middleware Proposal. Both above-mentioned IoT/CPS-based services require a middleware
which provides interoperability in a massive network of sensors.

Middleware Goal. The middleware should not only manage the IoT/CPS resources but also
refine, fuse, and analyze the various source of data coming from different sensors.

Middleware Method. We propose a service-oriented approach for the environment quality
index system in which the service should be available in real-time. The threat analysis system,
which should be activated based on specific events, can take advantage of an event-based solution.

Tool Proposal. GSN is the right choice since it is designed for sensor networks and supports
system configuration’s scalability and adaptability.

10.3 Case 3: ARCURE Pedestrian Detection Around Off-road Construction Trucks

Detecting pedestrians around heavy vehicles enhances the autonomy of I0T/CPS-based industrial
machinery (such as off-road construction trucks) regarding urban security. In this context, some
smart cameras can distinguish a person from an obstacle in real-time and alert the operator with a
visual and sound signal in case of danger. A control screen in the cabin allows the driver to judge
the critical nature of the situation and then avoid an accident. This process can be realized by a
Deep Learning algorithm for person detection, and automatized by self-adaptation techniques.
The main features to develop are: i) detecting pedestrian with atypical position; ii) detecting the
pedestrians from a distance of 0.3 to 15 meters; and iii) reaching a high level of reliability necessary
for autonomous machinery. Achieving these goals needs the algorithm to be trained using a large
and diverse data-set of images in an industrial context. The self-adaptive IoT/CPS can perform
architectural reconfiguration at sensors, computing, and actuators levels.

Non-functional Requirements. Within the IoT/CPS-based pedestrian detection system, self-
adaptation techniques should guarantee the detection function and enhance the system qualities
such as performance, reliability, and energy efficiency. The processing performance has to be at least
550 tera-operations per second. Furthermore, the system must detect the pedestrian and alert the
user in less than 200ms. Respecting the performance requirements improves the environmental and
urban safety measures. Another important aspect is that the system should be reliable and tolerated
to any possible fault. It is worth mentioning that in such safety-critical IoT/CPS, the system shall
detect all internal failures, and it has to warn the user if the detection is not working correctly.
Another essential requirement is that the power consumption shall be kept less than 15W.

Adaptation decision technique proposal. The architectural reconfiguration is necessary for
respecting the precision needed for pedestrian detection. If a sensor becomes faulty or the delay
becomes more than the specified threshold, the architecture can be adapted to take advantage of
additional sensors or computation resources. The reconfiguration can adopt MAPE-K feedback loop
to monitor the system and environment situation to react continuously. Besides, since the detection
system is based on deep learning algorithms, data-driven adaptation is a must.

Middleware Proposal. Using a middleware can provide inseparability among heterogeneous
sensors and provide a suitable dashboard for user decision making when needed.

Middleware Goal. In this particular case, all IoT/CPS resources are known, but their run-time
management is necessary. Data management is an essential middleware task due to the data-driven
nature of the detection system. Apart from human detection, other types of internal data can be
managed, such as HW temperature, energy consumption, and computation delay.

Middleware Method. We propose a database-oriented approach from which applications retrieve
data from a virtual database. This necessitates virtual machine-based method in which computation
and application resources are virtualized.

Tool Proposal. JCL could be a proper middleware since it provides the interoperability of all
IoT/CPS resources, including sensing, processing, and actuating.

30

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

11 THREATS TO VALIDITY

According to Petersen et al. [49], the quality rating for this systematic mapping study was assessed
and scored as 73% (see the Replication Package). This value is the ratio of the number of actions
taken compared to the total number of actions reported in the quality checklist. Our study’s quality
score is far beyond the scores obtained by existing systematic mapping studies in the literature,
which have a distribution with a median of 33% and 48% as an absolute maximum value. However,
the threats to validity are unavoidable. Below we shortly define the main threats to our study’s
validity and the way we mitigated them.

External Validity: In our study, the most severe threat related to external validity may consist of
having a set of primary studies that are not representative of the whole research on IoT architectural
styles. We mitigated this potential threat by i) following a search strategy including both automatic
search and backward-forward snowballing of selected studies; ii) defining a set of inclusion and
exclusion criteria. Along the same lines, gray and non-English literature are not included in our
research as we want to focus exclusively on state of the art presented in high-quality scientific
studies in English.

Internal Validity: It refers to the level of influence that extraneous variables may have on the
study’s design. We mitigated this potential threat to validity by i) rigorously defining and validating
the structure of our research, ii) defining our classification framework by carefully following the
keywording process, iii) and conducting both the vertical and horizontal analysis.

Construct Validity: It concerns the validity of extracted data with respect to the research
questions. We mitigated this potential source of threats in different ways. i) performing an automatic
search on multiple electronic databases to avoid potential biases; ii) having a strong and tested
search string; iii) Complementing the automatic by the snowballing activity; iv) rigorously screen
the studies according to inclusion and exclusion criteria.

Conclusion Validity: It concerns the relationship between the extracted data and the obtained
results. We mitigated potential threats to conclusion validity by applying well accepted systematic
methods and processes throughout our study and documenting all of them in the excel package.

12 CONCLUSION

This paper presents a systematic literature review study to classify and identify the domain state-
of-the-art and extract a set of middleware solutions for self-adaptive IoT/CPS. Starting from over
4,274 potentially relevant studies, we applied a selection procedure resulting in 62 primary studies.
The results of this study are both research and industry-oriented and are intended to design and
develop middleware for their self-adaptive applications. In future work, we will more extensively
assess the potential integration of existing research to various IoT/CPS industrial use-cases within
the CPS4EU project.

REFERENCES

[1] Claudio Arbib, Davide Arcelli, Julie Dugdale, Mahyar Moghaddam, and Henry Muccini. 2019. Real-time emergency response through
performant IoT architectures. In International Conference on Information Systems for Crisis Response and Management (ISCRAM).

[2] MN Babhiri, A Zyane, and A Ghammaz. 2018. An enhancement for the Autonomic Middleware-Level Scalability Management within
IoT System using Cloud Computing. In International Conference on Electronic Engineering and Renewable Energy. Springer, 80—-88.

[3] Yassine Banouar, Saad Reddad, Codé Diop, Christophe Chassot, and Abdellah Zyane. 2015. Monitoring solution for autonomic
Middleware-level QoS management within IoT systems. In 2015 IEEE/ACS 12th International Conference of Computer Systems and Ap-
plications (AICCSA). IEEE, 1-8.

[4] Ayoub Benayache, Azeddine Bilami, Sami Barkat, Pascal Lorenz, and Hafnaoui Taleb. 2019. MsM: A microservice middleware for smart
WSN-based IoT application. Journal of Network and Computer Applications 144 (2019), 138-154.

[5] Pere Botella, X Burgués, JP Carvallo, X Franch, G Grau,] Marco, and C Quer. 2004. ISO/IEC 9126 in practice: what do we need to know.
In Software Measurement European Forum, Vol. 2004. Citeseer.

[6] Cyril Cecchinel, Frangois Fouquet, Sébastien Mosser, and Philippe Collet. 2019. Leveraging live machine learning and deep sleep to
support a self-adaptive efficient configuration of battery powered sensors. Future Generation Computer Systems 92 (2019), 225-240.

31

https://www.dropbox.com/s/vg1tct0hwycwvxs/SLR%20CSUR%20-%20Replication%20Package.xlsx?dl=0

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

(71

8

=

[9

—

[10]
(1]
[12]
(13]
[14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]
[28]

[29]
[30]
[31]
(32]

[33]
[34]

[35]

[36]
(37]

(38]
(39]

[40]

Muhammad Aufeef Chauhan, Muhammad Ali Babar, and Boualem Benatallah. 2017. Architecting cloud-enabled systems: a systematic
survey of challenges and solutions. Software: Practice and Experience 47, 4 (2017), 599-644.

Keling Da, Philippe Roose, Marc Dalmau, Joseba Nevado, and Riadh Karchoud. 2014. Kali2Much: a context middleware for autonomic
adaptation-driven platform. In Proceedings of the 1st ACM Workshop on Middleware for Context-Aware Applications in the IoT. 25-30.
Leonardo de Souza Cimino, José Estevdo Eugénio de Resende, Lucas Henrique Moreira Silva, Samuel Queiroz Souza Rocha, Matheus
de Oliveira Correia, Guilherme Souza Monteiro, Gabriel Nata de Souza Fernandes, Renan da Silva Moreira, Junior Guilherme de Silva,
Matheus Inacio Batista Santos, et al. 2019. A middleware solution for integrating and exploring IoT and HPC capabilities. Software:
Practice and Experience 49, 4 (2019), 584-616.

Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with microservices: A systematic mapping study. Journal
of Systems and Software 150 (2019), 77-97.

Nathalia Moraes do Nascimento and Carlos José Pereira de Lucena. 2017. FIoT: An agent-based framework for self-adaptive and
self-organizing applications based on the Internet of Things. Information Sciences 378 (2017), 161-176.

Michael Donohoe, Brendan Jennings, and Sasitharan Balasubramaniam. 2015. Context-awareness and the smart grid: Requirements
and challenges. Computer Networks 79 (2015), 263-282.

Julie Dugdale, Mahyar Tourchi Moghaddam, and Henry Muccini. 2020. Human Behaviour Centered Design: Developing a Software
System for Cultural Heritage. In International Conference on Software Engineering. ICSE-SEIS’2020. ACM, 85-94.

Nikil Dutt, Axel Jantsch, and Santanu Sarma. 2015. Self-aware cyber-physical systems-on-chip. In 2015 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD). IEEE, 46-50.

Mohammad Mehdi Faghih and Mohsen Ebrahimi Moghaddam. 2011. SOMM: A new service oriented middleware for generic wireless
multimedia sensor networks based on code mobility. Sensors 11, 11 (2011), 10343-10371.

Soodeh Farokhi, Pooyan Jamshidi, Ivona Brandic, and Erik Elmroth. 2015. Self-adaptation challenges for cloud-based applications: A
control theoretic perspective. In 10th international workshop on feedback computing, Vol. 2015.

Antonio Filieri, Giordano Tamburrelli, and Carlo Ghezzi. 2015. Supporting self-adaptation via quantitative verification and sensitivity
analysis at run time. IEEE Transactions on Software Engineering 42, 1 (2015), 75-99.

Robert France and Bernhard Rumpe. 2007. Model-driven development of complex software: A research roadmap. In Future of Software
Engineering (FOSE’07). IEEE, 37-54.

Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. 2016. Protocol for a systematic mapping study on collaborative
model-driven software engineering. arXiv preprint arXiv:1611.02619 (2016).

Mirco Franzago, Davide Di Ruscio, Ivano Malavolta, and Henry Muccini. 2017. Collaborative model-driven software engineering: a
classification framework and a research map. IEEE Transactions on Software Engineering 44, 12 (2017), 1146-1175.

David Garlan, Bradley Schmerl, and Shang-Wen Cheng. 2009. Software architecture-based self-adaptation. In Autonomic computing
and networking. Springer, 31-55.

Julien Gascon-Samson, Mohammad Rafiuzzaman, and Karthik Pattabiraman. 2017. Thingsjs: Towards a flexible and self-adaptable
middleware for dynamic and heterogeneous iot environments. In Proceedings of the 4th Workshop on Middleware and Applications for
the Internet of Things. 11-16.

Sona Ghahremani, Holger Giese, and Thomas Vogel. 2017. Efficient utility-driven self-healing employing adaptation rules for large
dynamic architectures. In 2017 IEEE International Conference on Autonomic Computing (ICAC). IEEE, 59-68.

Berto de Tacio Pereira Gomes, Luiz Carlos Melo Muniz, Francisco José Da Silva e Silva, Davi Viana Dos Santos, Rafael Fernandes
Lopes, Luciano Reis Coutinho, Felipe Oliveira Carvalho, and Markus Endler. 2017. A middleware with comprehensive quality of
context support for the internet of things applications. Sensors 17, 12 (2017), 2853.

Dat Dac Hoang and Hye-Young Paik Chae-Kyu Kim. 2011. Service-oriented middleware architectures for cyber-physical systems.
(2011).

M Usman Iftikhar and Danny Weyns. 2014. Activforms: Active formal models for self-adaptation. In Proceedings of the 9th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems. 125-134.

ISO/IEC/IEEE. 2011. ISO/IEC/IEEE 42010, Systems and software engineering — Architecture description. (2011).

Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S Tucker. 2016. Fog computing may help to save energy in cloud
computing. IEEE Journal on Selected Areas in Communications 34, 5 (2016), 1728-1739.

Ghazaleh Javadzadeh and Amir Masoud Rahmani. 2020. Fog Computing Applications in Smart Cities: A Systematic Survey. Wireless
Networks 26, 2 (2020), 1433-1457.

Hamzeh Khazaei, Alireza Ghanbari, and Marin Litoiu. 2018. Adaptation as a service.. In CASCON. 282-288.

Michal Kit, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Frantisek Plasil. 2015. An architecture framework for experi-
mentations with self-adaptive cyber-physical systems. In 2015 IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE, 93-96.

Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process research in software engineering.
Information and software technology 55, 12 (2013), 2049-2075.

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software engineering. (2007).
Barbara Kitchenham, Rialette Pretorius, David Budgen, O Pearl Brereton, Mark Turner, Mahmood Niazi, and Stephen Linkman. 2010.
Systematic literature reviews in software engineering—-a tertiary study. Information and software technology 52, 8 (2010), 792-805.
Georgia Koutsandria, Reinhard Gentz, Mahdi Jamei, Anna Scaglione, Sean Peisert, and Chuck McParland. 2015. A real-time testbed
environment for cyber-physical security on the power grid. In Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security
and/or PrivaCy. 67-78.

Philippe Lalanda, Stéphanie Chollet, Colin Aygalinc, and Eva Gerbert-Gaillard. 2015. Service-based architecture and frameworks for
pervasive health applications. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA). IEEE, 1-8.
Georgios Lilis and Maher Kayal. 2018. A secure and distributed message oriented middleware for smart building applications. Automa-
tion in Construction 86 (2018), 163-175.

John C Mankins. 1995. Technology readiness levels. White Paper, April 6 (1995), 1995.

Mahyar Tourchi Moghaddam and Henry Muccini. 2019. Fault-Tolerant IoT. In International Workshop on Software Engineering for
Resilient Systems. Springer, 67-84.

Mahyar T Moghaddam, Eric Rutten, Philippe Lalanda, and Guillaume Giraud. 2020. IAS: an IoT Architectural Self-adaptation Frame-
work. In European Conference on Software Architecture. Springer, 333-351.

32

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

[41] Marina Mongiello, Tommaso Di Noia, Francesco Nocera, Eugenio Di Sciascio, and Angelo Parchitelli. 2016. Context-aware design of

reflective middleware in the internet of everything. In Federation of International Conferences on Software Technologies: Applications and
Foundations. Springer, 423-435.

[42] Henry Muccini and Mahyar Tourchi Moghaddam. 2018. Iot architectural styles. In European Conference on Software Architecture.

Springer, 68-85.

[43] Henry Muccini, Mohammad Sharaf, and Danny Weyns. 2016. Self-adaptation for cyber-physical systems: a systematic literature review.

In Proceedings of the 11th international symposium on software engineering for adaptive and self-managing systems. 75-81.

[44] Henry Muccini, Romina Spalazzese, Mahyar T Moghaddam, and Mohammad Sharaf. 2018. Self-adaptive IoT architectures: An emer-

gency handling case study. In Proceedings of the 12th European Conference on Software Architecture: Companion Proceedings. 1-6.

[45] European Commission [Online]. 2017. Technology readiness levels (TRL). (2017), 1. https://ec.europa.eu/research/participants/data/

ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

[46] Clovis Anicet Ouedraogo, Samir Medjiah, and Christophe Chassot. 2018. A modular framework for dynamic qos management at the

middleware level of the iot: Application to a onem2m compliant iot platform. In 2018 IEEE International Conference on Communications
(ICC). IEEE, 1-7.

[47] Clovis Anicet Ouedraogo, Samir Medjiah, Christophe Chassot, and Khalil Drira. 2018. Enhancing middleware-based IoT applications

through run-time pluggable Qos management mechanisms. application to a oneM2M compliant IoT middleware. Procedia computer
science 130 (2018), 619-627.

[48] Andrei Palade, Christian Cabrera, Fan Li, Gary White, Mohammad Abdur Razzaque, and Siobhéan Clarke. 2018. Middleware for Internet

of Things: an evaluation in a small-scale IoT environment. Journal of Reliable Intelligent Environments 4, 1 (2018), 3-23.

[49] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software

engineering: An update. Information and Software Technology 64 (2015), 1-18.

[50] Jesus MT Portocarrero, Flavia C Delicato, Paulo F Pires, Bruno Costa, Wei Li, Weisheng Si, and Albert Y Zomaya. 2017. RAMSES: a

new reference architecture for self-adaptive middleware in wireless sensor networks. Ad Hoc Networks 55 (2017), 3-27.

[51] Behrouz Pourghebleh and Vahideh Hayyolalam. 2019. A comprehensive and systematic review of the load balancing mechanisms in

the Internet of Things. Cluster Computing (2019), 1-21.

[52] Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhan Clarke. 2015. Middleware for internet of things: a

survey. IEEE Internet of things journal 3, 1 (2015), 70-95.

[53] Matthias Rohr, Simon Giesecke, Marcel Hiel, Willem-Jan van den Heuvel, Hans Weigand, and Wilhelm Hasselbring. 2006. A classifica-

tion scheme for self-adaptation research. (2006).

[54] Eric Rutten, Nicolas Marchand, and Daniel Simon. 2017. Feedback control as MAPE-K loop in autonomic computing. In Software

Engineering for Self-Adaptive Systems IIl. Assurances. Springer, 349-373.

[55] Douglas C Schmidt. 2006. Model-driven engineering. Computer-IEEE Computer Society- 39, 2 (2006), 25.
[56] Sebastian Scholze, José Barata, and Oliver Kotte. 2013. Context Awareness for self-adaptive and highly available Production Systems.

In Doctoral Conference on Computing, Electrical and Industrial Systems. Springer, 210-217.

[57] Ronny Seiger, Steffen Huber, Peter Heisig, and Uwe Aimann. 2019. Toward a framework for self-adaptive workflows in cyber-physical

systems. Software & Systems Modeling 18, 2 (2019), 1117-1134.

[58] Ronny Seiger, Steffen Huber, and Thomas Schlegel. 2018. Toward an execution system for self-healing workflows in cyber-physical

systems. Software & Systems Modeling 17, 2 (2018), 551-572.

[59] Stepan Shevtsov, Mihaly Berekmeri, Danny Weyns, and Martina Maggio. 2017. Control-theoretical software adaptation: A systematic

literature review. IEEE Transactions on Software Engineering 44, 8 (2017), 784-810.

[60] Alberto MC Souza and Jose RA Amazonas. 2013. A novel smart home application using an internet of things middleware. In Smart

SysTech 2013; European Conference on Smart Objects, Systems and Technologies. VDE, 1-7.

[61] Feng Wang, Liang Hu, Jin Zhou, and Kuo Zhao. 2015. A data processing middleware based on SOA for the internet of things. Journal

of Sensors 2015 (2015).

[62] Danny Weyns. 2017. Software engineering of self-adaptive systems: an organised tour and future challenges. Chapter in Handbook of

Software Engineering (2017).

[63] Danny Weyns and Michael Georgeff. 2009. Self-adaptation using multiagent systems. IEEE software 27, 1 (2009), 86-91.
[64] Danny Weyns, M Usman Iftikhar, Danny Hughes, and Nelson Matthys. 2018. Applying architecture-based adaptation to automate the

management of internet-of-things. In European Conference on Software Architecture. Springer, 49-67.

[65] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola, Christian Prehofer, Jochen Wuttke, Jesper Andersson,

Holger Giese, and Karl M Goschka. 2013. On patterns for decentralized control in self-adaptive systems. In Software Engineering for
Self-Adaptive Systems II. Springer, 76-107.

[66] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings

of the 18th international conference on evaluation and assessment in software engineering. 1-10.

[67] Claes Wohlin, Per Runeson, Martin Hést, Magnus C Ohlsson, Bjérn Regnell, and Anders Wesslén. 2012. Experimentation in software

engineering. Springer Science & Business Media.

[68] Yu Wu and Minbo Li. 2018. An IoT Middleware of Data Service. In 2018 IEEE 11th Conference on Service-Oriented Computing and

Applications (SOCA). IEEE, 121-128.

[69] He Zhang, Muhammad Ali Babar, and Paolo Tell. 2011. Identifying relevant studies in software engineering. Information and Software

Technology 53, 6 (2011), 625-637.

[70] Tiangi Zhao, Wei Zhang, Haiyan Zhao, and Zhi Jin. 2017. A reinforcement learning-based framework for the generation and evolution

of adaptation rules. In 2017 IEEE International Conference on Autonomic Computing (ICAC). IEEE, 103-112.

PRIMARY STUDIES

P1: Kit, Michal, Ilias Gerostathopoulos, Tomas Bures, Petr Hnetynka, and Frantisek Plasil. "An architecture framework for experimenta-
tions with self-adaptive cyber-physical systems." In 2015 IEEE/ACM 10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pp. 93-96. IEEE, 2015.

P2: Park, Soojin, and Sungyong Park. "A Cloud-based Middleware for Self-Adaptive IoT-Collaboration Services." Sensors 19, no. 20 (2019):
4559.

33

https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf

The ACM Computing Surveys Journal, CSUR Moghaddam M. T., et al.

P3: Souza, Alberto MC, and Jose RA Amazonas. "A novel smart home application using an internet of things middleware." In Smart
SysTech 2013; European Conference on Smart Objects, Systems and Technologies, pp. 1-7. VDE, 2013.

P4: Gascon-Samson, Julien, Mohammad Rafiuzzaman, and Karthik Pattabiraman. "Thingsjs: Towards a flexible and self-adaptable mid-
dleware for dynamic and heterogeneous iot environments." In Proceedings of the 4th Workshop on Middleware and Applications for the
Internet of Things, pp. 11-16. 2017.

P5: Mongiello, Marina, Tommaso Di Noia, Francesco Nocera, Eugenio Di Sciascio, and Angelo Parchitelli. "Context-aware design of
reflective middleware in the internet of everything." In Federation of International Conferences on Software Technologies: Applications and
Foundations, pp. 423-435. Springer, Cham, 2016.

P6: Cecchinel, Cyril, Francois Fouquet, Sébastien Mosser, and Philippe Collet. "Leveraging live machine learning and deep sleep to support
a self-adaptive efficient configuration of battery powered sensors." Future Generation Computer Systems 92 (2019): 225-240.

P7: Sylla, Adja Ndeye, Maxime Louvel, Eric Rutten, and Gwenaél Delaval. "Modular and hierarchical discrete control for applications and
middleware deployment in iot and smart buildings." In 2018 IEEE Conference on Control Technology and Applications (CCTA), pp. 1472-1479.
IEEE, 2018.

P8: Banouar, Yassine, Saad Reddad, Codé Diop, Christophe Chassot, and Abdellah Zyane. "Monitoring solution for autonomic Middleware-
level QoS management within IoT systems." In 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA),
pp. 1-8. IEEE, 2015.

P9: Kim, Hyun-Woo, Jong Hyuk Park, and Young-Sik Jeong. "Efficient resource management scheme for storage processing in cloud
infrastructure with internet of things." Wireless Personal Communications 91, no. 4 (2016): 1635-1651.

P10: Handte, Marcus, Pedro José Marrén, and Gregor Schiele, eds. Adaptive Middleware for the Internet of Things: The GAMBAS Ap-
proach. River Publishers, 2019.

P11: Lilis, Georgios, and Maher Kayal. "A secure and distributed message oriented middleware for smart building applications." Automa-
tion in Construction 86 (2018): 163-175.

P12: Ouedraogo, Clovis Anicet, Samir Medjiah, and Christophe Chassot. "A modular framework for dynamic qos management at the
middleware level of the iot: Application to a onem2m compliant iot platform." In 2018 IEEE International Conference on Communications
(ICC), pp. 1-7. IEEE, 2018.

P13: Wu, Yu, and Minbo Li. "An IoT Middleware of Data Service." In 2018 IEEE 11th Conference on Service-Oriented Computing and
Applications (SOCA), pp. 121-128. IEEE, 2018.

P14: Mohalik, Swarup Kumar, Nanjangud C. Narendra, Ramamurthy Badrinath, Mahesh Babu Jayaraman, and Chakri Padala. "Dynamic
semantic interoperability of control in IoT-based systems: Need for adaptive middleware" In 2016 IEEE 3rd World Forum on Internet of
Things (WF-IoT), pp. 199-203. IEEE, 2016.

P15: Wang, Feng, Liang Hu, Jin Zhou, and Kuo Zhao. "A data processing middleware based on SOA for the internet of things." Journal of
Sensors 2015 (2015).

P16: Kazmi, Ageel, Zeeshan Jan, Achille Zappa, and Martin Serrano. "Overcoming the heterogeneity in the internet of things for smart
cities." In International workshop on interoperability and open-source solutions, pp. 20-35. Springer, Cham, 2016.

P17: Seiger, Ronny, Steffen Huber, and Thomas Schlegel. "Toward an execution system for self-healing workflows in cyber-physical
systems." Software & Systems Modeling 17, no. 2 (2018): 551-572.

P18: Palade, Andrei, Christian Cabrera, Fan Li, Gary White, Mohammad Abdur Razzaque, and Siobhan Clarke. "Middleware for Internet
of Things: an evaluation in a small-scale IoT environment." Journal of Reliable Intelligent Environments 4, no. 1 (2018): 3-23.

P19: Gomes, Berto de Tacio Pereira, Luiz Carlos Melo Muniz, Francisco José Da Silva e Silva, Davi Viana Dos Santos, Rafael Fernandes
Lopes, Luciano Reis Coutinho, Felipe Oliveira Carvalho, and Markus Endler. "A middleware with comprehensive quality of context
support for the internet of things applications." Sensors 17, no. 12 (2017): 2853.

P20: Bao, Kaibin, Ingo Mauser, Sebastian Kochanneck, Huiwen Xu, and Hartmut Schmeck. "A microservice architecture for the intranet
of things and energy in smart buildings." In Proceedings of the 1st International Workshop on Mashups of Things and APIs, pp. 1-6. 2016.
P21: Ouedraogo, Clovis Anicet, Samir Medjiah, Christophe Chassot, and Khalil Drira. "Enhancing middleware-based IoT applications
through run-time pluggable Qos management mechanisms. application to a oneM2M compliant 10T middleware." Procedia computer
science 130 (2018): 619-627.

P22: Rahman, Mahmudur, Amatur Rahman, Hua-Jun Hong, Li-Wen Pan, Md Yusuf Sarwar Uddin, Nalini Venkatasubramanian, and
Cheng-Hsin Hsu. "An adaptive IoT platform on budgeted 3g data plans." Journal of Systems Architecture 97 (2019): 65-76.

P23: Qin, Zhijing, Grit Denker, Carlo Giannelli, Paolo Bellavista, and Nalini Venkatasubramanian. "A software defined networking archi-
tecture for the internet-of-things." In 2014 IEEE network operations and management symposium (NOMS), pp. 1-9. IEEE, 2014.

P24: Andersen, Michael P., Gabe Fierro, and David E. Culler. "Enabling synergy in iot: Platform to service and beyond." Journal of Network
and Computer Applications 81 (2017): 96-110.

P25: Benson, Kyle E., Guoxi Wang, Nalini Venkatasubramanian, and Young-Jin Kim. "Ride: A resilient iot data exchange middleware lever-
aging sdn and edge cloud resources." In 2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation
(IoTDI), pp. 72-83. IEEE, 2018.

P26: Bahiri, M. N., A. Zyane, and A. Ghammaz. "An enhancement for the Autonomic Middleware-Level Scalability Management within
IoT System using Cloud Computing." In International Conference on Electronic Engineering and Renewable Energy, pp. 80-88. Springer,
Singapore, 2018.

P27: Dobrescu, Radu, Daniel Merezeanu, and Stefan Mocanu. "Context-aware control and monitoring system with IoT and cloud support."
Computers and Electronics in Agriculture 160 (2019): 91-99.

P28: Weifibach, Martin, Nguonly Taing, Markus Wutzler, Thomas Springer, Alexander Schill, and Siobhan Clarke. "Decentralized coordi-
nation of dynamic software updates in the Internet of Things." In 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 171-176.
IEEE, 2016.

P29: Naranjo, Paola G. Vinueza, Enzo Baccarelli, and Michele Scarpiniti. "Design and energy-efficient resource management of virtualized
networked Fog architectures for the real-time support of IoT applications." The journal of Supercomputing 74, no. 6 (2018): 2470-2507.
P30: Vanneste, Simon, Jens de Hoog, Thomas Huybrechts, Stig Bosmans, Reinout Eyckerman, Muddsair Sharif, Siegfried Mercelis, and
Peter Hellinckx. "Distributed uniform streaming framework: an elastic fog computing platform for event stream processing and platform
transparency." Future Internet 11, no. 7 (2019): 158.

P31: Da, Keling, Philippe Roose, Marc Dalmau, Joseba Nevado, and Riadh Karchoud. "Kali2Much: a context middleware for autonomic
adaptation-driven platform." In Proceedings of the 1st ACM Workshop on Middleware for Context-Aware Applications in the IoT, pp. 25-30.
2014.

34

Self-adaptive Middleware Support for loT/CPS The ACM Computing Surveys Journal, CSUR

P32: Lalanda, Philippe, Stéphanie Chollet, Colin Aygalinc, and Eva Gerbert-Gaillard. "Service-based architecture and frameworks for

pervasive health applications." In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1-8. IEEE, 2015.

P33: Qin, Zhijing, Luca lannario, Carlo Giannelli, Paolo Bellavista, Grit Denker, and Nalini Venkatasubramanian. "MINA: A reflective

middleware for managing dynamic multinetwork environments." In 2014 IEEE Network Operations and Management Symposium (NOMS),

pp. 1-4. IEEE, 2014.

P34: Caporuscio, Mauro, Vincenzo Grassi, Moreno Marzolla, and Raffaela Mirandola. "G o P rime: A Fully Decentralized Middleware for

Utility-Aware Service Assembly." IEEE Transactions on Software Engineering 42, no. 2 (2015): 136-152.

e P35: Chen, Chunhua, and Junwei Yan. "HyTube: A Novel Middleware Layer for Smart Building Systems." In 2018 IEEE 16th Intl Conf

on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data

Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 135-142. IEEE, 2018.

P36: Koutsandria, Georgia, Reinhard Gentz, Mahdi Jamei, Anna Scaglione, Sean Peisert, and Chuck McParland. "A real-time testbed

environment for cyber-physical security on the power grid." In Proceedings of the First ACM Workshop on Cyber-Physical Systems-Security

and/or PrivaCy, pp. 67-78. 2015.

P37: Dutt, Nikil, Axel Jantsch, and Santanu Sarma. "Self-aware cyber-physical systems-on-chip." In 2015 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), pp. 46-50. IEEE, 2015.

P38: Siegemund, Gerry, and Volker Turau. "A self-stabilizing publish/subscribe middleware for iot applications." ACM Transactions on

Cyber-Physical Systems 2, no. 2 (2018): 1-26.

P39: Razouk, Wissam, Daniele Sgandurra, and Kouichi Sakurai. "A new security middleware architecture based on fog computing and

cloud to support IoT constrained devices." In Proceedings of the 1st International Conference on Internet of Things and Machine Learning,

pp. 1-8. 2017.

P40: Singh, Jatinder, Thomas Pasquier, Jean Bacon, Julia Powles, Raluca Diaconu, and David Eyers. "Big ideas paper: Policy-driven mid-

dleware for a legally-compliant Internet of Things." In Proceedings of the 17th International Middleware Conference, pp. 1-15. 2016.

P41: Prazeres, Cassio, Jurandir Barbosa, Leandro Andrade, and Martin Serrano. "Design and implementation of a message-service oriented

middleware for fog of things platforms." In Proceedings of the Symposium on Applied Computing, pp. 1814-1819. 2017.

P42: Merlino, Giovanni, Rustem Dautov, Salvatore Distefano, and Dario Bruneo. "Enabling Workload Engineering in Edge, Fog, and Cloud

Computing through OpenStack-based Middleware" ACM Transactions on Internet Technology (TOIT) 19, no. 2 (2019): 1-22.

P43: Rosa, Nelson, Glaucia Campos, and Davi Cavalcanti. "Using software architecture principles and lightweight formalisation to build

adaptive middleware." In Proceedings of the 16th Workshop on Adaptive and Reflective Middleware, pp. 1-7. 2017.

P44: Naber, Jens, Martin Pfannemiiller, Janick Edinger, and Christian Becker. "PerFlow: configuring the information flow in a pervasive

middleware via visual scripting." In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, pp. 434-443. 2019.

P45: Paspallis, Nearchos, and George A. Papadopoulos. "A pluggable middleware architecture for developing context-aware mobile ap-

plications." Personal and Ubiquitous Computing 18, no. 5 (2014): 1099-1116.

P46: Portocarrero, Jesus MT, Flavia C. Delicato, Paulo F. Pires, Taniro C. Rodrigues, and Thais V. Batista. "SAMSON: self-adaptive mid-

dleware for wireless sensor networks." In Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 1315-1322. 2016.

P47: Javed, Asad, Jérémy Robert, Keijo Heljanko, and Kary Framling. "[oTEF: A Federated Edge-Cloud Architecture for Fault-Tolerant

IoT Applications." Journal of Grid Computing (2020): 1-24.

e P48: Baresi, Luciano, Sam Guinea, and Adnan Shahzada. "SeSaMe: towards a semantic self adaptive middleware for smart spaces." In
International Workshop on Engineering Multi-Agent Systems, pp. 1-18. Springer, Berlin, Heidelberg, 2013.

e P49: Weyns, Danny. "Software engineering of self-adaptive systems." In Handbook of Software Engineering, pp. 399-443. Springer, Cham,

2019.

P50: Bouloukakis, Georgios, Nikolaos Georgantas, Patient Ntumba, and Valerie Issarny. "Automated synthesis of mediators for middleware-

layer protocol interoperability in the IoT"" Future Generation Computer Systems 101 (2019): 1271-1294.

P51: Benayache, Ayoub, Azeddine Bilami, Sami Barkat, Pascal Lorenz, and Hafnaoui Taleb. "MsM: A microservice middleware for smart

WSN-based IoT application." Journal of Network and Computer Applications 144 (2019): 138-154.

P52: Rafique, Ansar, Dimitri Van Landuyt, Eddy Truyen, Vincent Reniers, and Wouter Joosen. "SCOPE: self-adaptive and policy-based

data management middleware for federated clouds." Journal of Internet Services and Applications 10, no. 1 (2019): 2.

P53: Pease, Sarogini Grace, Paul P. Conway, and Andrew A. West. "Hybrid ToF and RSSI real-time semantic tracking with an adaptive

industrial internet of things architecture.” Journal of Network and Computer Applications 99 (2017): 98-109.

P54: Colin, Aygalinc, Eva Gerbert-Gaillard, German Vega, Philippe Lalanda, and Stéphanie Chollet. "Autonomic service-oriented context

for pervasive applications." In 2016 IEEE International Conference on Services Computing (SCC), pp. 491-498. IEEE, 2016.

P55: Donohoe, Michael, Brendan Jennings, and Sasitharan Balasubramaniam. "Context-awareness and the smart grid: Requirements and

challenges." Computer Networks 79 (2015): 263-282.

e P56: Zhao, Mengxuan, Gilles Privat, Eric Rutten, and Hassane Alla. "Discrete control for smart environments through a generic finite-

state-models-based infrastructure.” In European Conference on Ambient Intelligence, pp. 174-190. Springer, Cham, 2014.

P57: de Brito, Mathias Santos, Saiful Hoque, Ronald Steinke, Alexander Willner, and Thomas Magedanz. "Application of the fog computing

paradigm to smart factories and cyber-physical systems." Transactions on Emerging Telecommunications Technologies 29, no. 4 (2018): e3184.

P58: Koziolek, Heiko, Andreas Burger, Marie Platenius-Mohr, Julius Riickert, Francisco Mendoza, and Roland Braun. "Automated indus-

trial IoT-device integration using the OpenPnP reference architecture." Software: Practice and Experience (2019).

P59: de Souza Cimino, Leonardo, José Estevao Eugénio de Resende, Lucas Henrique Moreira Silva, Samuel Queiroz Souza Rocha, Matheus

de Oliveira Correia, Guilherme Souza Monteiro, Gabriel Nata de Souza Fernandes et al. "A middleware solution for integrating and

exploring IoT and HPC capabilities." Software: Practice and Experience 49, no. 4 (2019): 584-616.

P60: Seiger, Ronny, Steffen Huber, Peter Heisig, and Uwe Afimann. "Toward a framework for self-adaptive workflows in cyber-physical

systems." Software & Systems Modeling 18, no. 2 (2019): 1117-1134.

P61: Casado-Vara, Roberto, Pablo Chamoso, Fernando De la Prieta, Javier Prieto, and Juan M. Corchado. "Non-linear adaptive closed-loop

control system for improved efficiency in IoT-blockchain management." Information Fusion 49 (2019): 227-239.

P62: Portocarrero, Jesus MT, Flavia C. Delicato, Paulo F. Pires, Bruno Costa, Wei Li, Weisheng Si, and Albert Y. Zomaya. "Ramses: a new

reference architecture for self-adaptive middleware in wireless sensor networks." Ad Hoc Networks 55 (2017): 3-27.

35

	Abstract
	1 Introduction
	2 Motivation
	2.1 Related Systematic Studies
	2.2 Need for an SLR on Self-adaptive IoT/CPS Middleware Support

	3 Research Implementation
	3.1 Research Questions
	3.2 Protocol and Replication Package

	4 Structuring the study results
	5 Documentation and Trends
	6 Self-Adaptation Objectives (RQ1)
	6.1 Environment
	6.2 Infrastructure
	6.3 Coordination of Infrastructure and Environment

	7 Self-adaptation Decision (RQ2)
	7.1 Time
	7.2 Decision Methods

	8 Middleware Support for Self-adaptive IoT/CPS (RQ3)
	8.1 Middleware Goals
	8.2 Middleware Solutions
	8.3 Middleware Tools
	8.4 Industrial Adoption

	9 Horizontal Analysis
	9.1 Architectural Distribution Patterns VS Quality Attributes
	9.2 Adaptation Decision Methods VS Middleware Solutions
	9.3 Middleware Goals VS Middleware Solutions

	10 Discussion Considering Some Industrial Use-Cases
	10.1 Case 1: RTE Smart Grid System
	10.2 Case 2: ACOEM Smart Cities System
	10.3 Case 3: ARCURE Pedestrian Detection Around Off-road Construction Trucks

	11 Threats to Validity
	12 Conclusion
	References

