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Developing safety-critical AI-based systems is an emerging challenge in aviation. Amongst
others, the recent concept paper of the European Union Aviation Safety Agency (EASA), "First
usable guidance for Level 1 machine learning applications", provides invaluable insights to
tackle this challenge. It particularly highlights the importance of synthetic data for training,
validation and testing as a means of complementing real world data for completeness and
representatives. The primary source of synthetic data is simulations. The literature recognizes
simulation not only as a crucial data source but an effective method for verification. This paper
uses EASA guidance as a baseline to propose a simulation-based data generation process for
AI-based airborne systems.

I. Introduction
The future of aviation will be smart and connected. European Union Aviation Safety Agency (EASA) Artificial

Intelligence Roadmap [1] presents the intention of the agency to approve the first AI-based systems in 2025. To enable
the certification of AI-based systems in aviation, there are many ongoing efforts for developing acceptable means of
compliance [2]. EASA Concept Paper: First Usable Guidance for Level 1 Machine Learning Applications [3] has been
the first one to be published for airborne systems. EASA classifies the AI-based systems to Level 1 when they are human
assistance, Level 2 when there is a human/machine collaboration and Level 3 for the autonomous machine.

The EASA guidance presents learning assurance, AI explainability and AI safety risk mitigation as the building
blocks of trustworthy AI. Learning assurance aims at extending the current development assurance approaches to cover
the learning process. Figure 1 shows the integrated learning assurance process proposed by the EASA concept paper,
where there is learning process verification before the implementation. The machine learning model is expected to be
verified before going forward with the implementation. Different from the classical non-AI systems, implementation
verification includes inference model verification and data verification. As for all other AI-based systems, data is also
the key element in the EASA learning assurance process. The model training step uses training and validation data,
whereas test data is used for learning process verification and inference model verification.

The data requirements for developing AI-based systems are enormous. Particularly for computer vision applications,
while it may be possible to produce real data and label them for typical cases, it is almost impossible to produce data for
corner cases if not too dangerous or too expensive. The public extract of the report from the collaboration between EASA
and Deadalean AG from the project Concepts of Design Assurance for Neural Networks (CoDANN) [4] recognizes
simulation as a crucial data source.

Scenarios are important artefacts in the simulation engineering process[5]. A simulation study begins with a
description of a scenario and ends with a successful simulation execution[6].SES has been a vital component in the
scenario-based approaches for aviation. It represents elements of a system and their relationships in a hierarchical
and axiomatic manner[7]. [8] have used SES metamodel to model components of a scenario in Aviation and have
demonstrated its capabilities in Aviation Scenario Definition Language(ASDL)[7] and as well as its use in a research
simulator[9] at the German Aerospace Center. However, a scenario based approach using SES needs to evolve for the
data demands posed by AI-based systems.
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Fig. 1 EASA Integrated Learning Assurance Process [3]

The main concern of the paper is to answer the question: What needs to be simulated for synthetic data generations?
We aim to answer this question with a simulation-based data generation process based on the EASA guidance and the
scenario based approach using SES. The process will be an extension to SES scenario modelling [10]where we visit
some other concepts related to AI based system and exemplify all the steps with a demonstrator.

II. Scenarios. Operational Design Domain and Simulation
The EASA guidance asks the developers of the ConOps for all AI-based systems to first capture the operational

scenarios and then the operational limitations and assumptions of the system, namely the Operational Design Domain
(ODD).

“A conops describe how a system will be operated during a life cycle phases to meet the stakeholders expectations.It
describes the system characteristics from an operational perspective and helps facilitate an understanding of the system
goals” [11]

While there is no commonly accepted definition of ODD in aviation, in the automotive domain, ODD is defined
as Operating conditions under which a given driving automation system or feature thereof is specifically designed
to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the
requisite presence or absence of certain traffic or roadway characteristics [12]. The same definition has been used in
Unmanned Aircraft Systems and the concepts of Automation and Autonomy briefing paper[13]. The British Standards
Institute released a Publicly available Specification 1883 further provides an ODD taxonomy for automated driving
systems [6]. It decomposes ODD into the scenery, environmental conditions and dynamic elements. At the top level,
scenery encompasses fixed road structures, drivable areas and junctions; environmental conditions include weather and
illumination, and dynamic elements are traffic and subject vehicle. This taxonomy inspired the formal modelling of
ODD. While some factors from the Automotive Domain are not directly transferable to Aviation, There exists similarities
in the classification and will serve as a good starting point for modelling ODD in Aviation.

A scenario is defined with the major entities, their initial conditions, a timeline of significant events, and the
environment [14]. Scenario development can be prescribed as a process beginning with the stakeholders’ descriptions
of the scenario and finishing with the generation of the corresponding executable specifications to be simulated. Based
on the classification of Siegfried and his colleagues [15, 16], there are three types of scenarios that are produced in
successive stages of the scenario development process: operational scenarios, conceptual scenarios, and executable
scenarios: Operational scenarios are described in plain language describing the intended use of the system, conceptual
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scenarios are modelled formally in detail based on the simulation environment and executable scenarios contains the
specifications to be executed in the simulator[17]. The critical elements in this operational scenario are the entities,
their initial states and the events. They are usually required to be refined and augmented with additional information
pertaining to simulation. They correspond to the operational scenarios that are presented as a part of ConOps at EASA
guidance. The refinement of operational scenarios needs to be done by the simulation experts to achieve completeness
and consistency. The result is conceptual scenarios that specify the piece of the world to be represented in the simulation
environment in detail. The executable scenario is finally the specification of the conceptual scenario in a particular
format to be processed by the simulation applications.

Fig. 2 An Example SES and PES

III. From Domain Model to Synthetic Data
On the one hand, the EASA guidance proposes an anticipated means of compliance for data completeness which

says the data sets shall be evaluated against the completeness concerning the ODD; on the other hand, ODDs shall
be developed using the operational scenarios from ConOps. This paper proposes to use the very same scenarios for
data generation, and thereby we aim to achieve data completeness, in other words, ODD coverage automatically. The
following sections explain how the operational scenarios defined in natural language within a ConOps can be used to
design a domain model, which can then be used for generating scenarios and the ODD.

A. Background
Durak and his colleagues have been working using System Entity Structures (SES) for scenario definition since 2018.

They present their model-based approach for scenario modelling using SES at [9].In [10] they propose a computational
representation, a serialization approach for the SES. [18] introduces the tooling, the SES Editor ∗.

SES is a high-level ontology that was developed for modelling variable-structure systems [19, 20]. It is a declarative
knowledge representation scheme that specifies the structure of a family of systems using decompositions, component
taxonomies, and coupling specifications and constraints. SES is a directed and labelled tree composed of Entity, Aspect,
Specialization and Multi-Aspect nodes. An entity is an object of interest to which Variables can be attached; an Aspect
specifies a decomposition relationship of an entity, while Specialization denotes its taxonomy. Vertical lines and
Specializations represent aspects with a double line. A special kind of Aspect is Multiple-Aspect which denotes that the
parent entity is a composition of multiple entities of the same type. Three vertical lines represent it.

Uniformity, alternating mode, strict hierarchy, attached variables, valid brothers, and inheritance are the six axioms
∗https://github.com/aeronautical-informatics/SESTools
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that regulate an SES. Uniformity enforces that any two nodes with the same labels have isomorphic subtrees. Alternating
mode states that if a node is an Entity, the successor is either Aspect or Specialization, and vice versa. Strict hierarchy
constraints a label from appearing more than once down any path of the tree. The attached variables endorse that
variable types attached to the same item shall have distinct names. Valid brothers prevent having two brothers with the
same label. Finally, inheritance endorses that Specialization inherits all variables and Aspects.

Pruning is the operation of assigning values to the variables and resolving the choices in Aspect, Multi-Aspect and
Specialization relations, resulting in the Pruned Entity Structure (PES), a selection-free tree. During pruning, amongst
several Aspect nodes for different decompositions of a system, a particular subset can be chosen based on the purpose.
Specializations are resolved by choosing one of the variants. The cardinalities in Multi-Aspect relations are also needed
to be specified in pruning. An example of SES and PES are given in Figure 2, where on the left-hand side is the SES for
a family of aircraft, on the right-hand side is the PES of a particular aircraft with two engines and composite airframe.
An automated pruning approach for simulations has been presented in [21].

Fig. 3 Simulation-Based Data Generation

B. Approach
As presented in Figure 3, the proposed simulation-based data generation process is built upon the aforementioned

previous work. SES is proposed at the meta-level as the high-level ontology. At the domain level, the operational
scenarios given in ConOps are formalized with domain modelling into the Operational Domain Entity Structure (ODES).
ODES’ idea extends Operation-Specific Scenario Description Language (OSDL)[22], which helped define safe scenarios
for a particular Unmanned Air Systems (UAS). OSDL utilizes the ranges of the types for the Variables to specify and
enforce the safety limits given in CONOPS. ODES extends it with a specific focus on domain modelling to capture the
ODD and create a formal basis for a scenario specification.

While the ASAM OpenODD Concept Paper [23] highlights the difference between ODD and a scenario, in this
paper, we concentrate on the similarities and try to answer if we can use a single domain model for both of them. As
stated in ASAM Concept Paper, ODDs and scenarios are related but surely not the same. ODD specifies the system’s
operating environment, whereas a scenario specifies the behaviour of the entities in an ODD. They both use the same
ontology and the same entity pool. To our understanding, ODD constraints what can exist in a scenario, where the
scenario describes what happens within the ODD. The behavioural specifications in scenarios are usually described
with events. While a scenario provides the discrete events, it is expected that the continuous behaviour of the entities
starting from the scenario initial conditions are simulated. The approach promises natural traceability between the ODD
and the scenarios due to their standard domain model.

Figure 3 depicts that the conceptual scenarios will be generated from ODES with pruning and ODD with the model
to text (M2T) transformations. It is possible then to conduct pruning automatically and generate scenarios for data
generation that confirms the completeness objective required from the EASA guideline. The pruning can be carried out
with different parameters, particularly for the values of the parameters, to generate a distinct set of scenarios for training,
validation and verification. The next step is to generate executable scenarios from conceptual scenarios. Generating a
scenario file for a particular simulator is usually a model to text (M2T) transformation. The execution of the scenarios
with the simulator leads to a set of synthetic data that can be used for training, validation or verification purposes.
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Fig. 4 An Excerpt from the ODES for Drogue Detection

IV. An Example: Drogue Detection for Autonomous Aerial Refueling
Aerial refuelling extends the airborne time by transferring fuel from a tanker aircraft to a follower aircraft during

the flight. In probe and aerial drogue refuelling, the follower approaches the tanker from behind and inserts a probe
through the drogue basket into the hose, where the follower receives the fuel. For automation of the docking phase,
object detection is used to identify the drogue basket. This section is based on [24] where simulation-based verification
is used for a detection algorithm that utilizes Convolutional Neural Networks (CNNs). The scenarios are executed in the
simulation environment that is built using Unity 3D †.

An excerpt from the ODES for the drogue detection is depicted in Figure 4. The ODES for this application
incorporated various aspects of refuelling, such as weather, light or relative position. Then each of them is elaborated
and further modelled to represent all possible options. As an example, precipitation can be light rain, light snow,
heavy rain and heavy snow. The quantitative characteristics of these enumerations are captured in their variables. The
corresponding ODD excerpt is presented in a tabular format in Table 1. It describes the operating environment of
the drogue detection algorithm in aerial refuelling. For example, as defined in the domain model, ODD presents the
different types of clouds that we expect the drogue detection algorithm to work. An excerpt from a sample conceptual
scenario specified in PES is given in Figure 5. All the elements of a scenario to simulate refuelling in this context is
captured with this tree. There will be front light on a blue sky without precipitation where there are cirrus clouds.
Motion blur also exists. The drogue will move towards the centre and far from the camera. This conceptual scenario
converts to a format that executes in the simulation environment in Unity 3D.

The synthetic data being produced incorporates an image and the bounding box for the drogue on the ground truth.
Figure 6 presents a sample result of a test that is being done using the synthetic data. The CNN-based drogue detection
algorithm detected the drogue with 97% accuracy calculated using one of the standard metrics, Intersection over Union
(IoU).

†https://unity.com
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Fig. 5 An Excerpt from a Sample Conceptual Scenario

Environmental
Conditions

Precipitation
None, Light Rain, Light Snow,
Heavy Rain, Heavy Snow

Light Front, Top, Right, Left, Bottom
Motion Blur Yes, No
Dynamic Elements Drogue
Relative Position Top, Bottom, Center, Right, Left
Distance Close, Far
Scenery

Clouds

Clear, Cirrus, Cirrostratus,
Altostratus, Stratocumulus,
Stratus, Cumulus, Cirrocumulus,
Cumulonimbus , Altocumulus

Table 1 An Excerpt fromDrogue Detection ODD

Fig. 6 An Example Test Result with a Synthetic
Data.

V. Outlook
Using synthetic data comes with various challenges, such as data verification. However, it can also provide means

to generate evidence regarding its traceability, completeness and consistency automatically. This paper presents a
model-based approach that promotes domain modelling for specifying operational scenarios and the Operational Design
Domain (ODD). When the standard domain model is taken as the single source of truth, it may naturally provide the
required traceability between operational scenarios and the ODD. The automated scenario generation may then be used
to guarantee consistency and completeness.

The data management process is yet to be exercised and matured in various industrial AI-based systems development
activities. This paper, nonetheless, includes an early example to illustrate the realization of the proposed approach.
Both the approach and the tooling require further development. The lessons learned from the initial use case are now
driving our future work that extends SES at the meta-level further towards supporting intelligent system entity structures.
Furthermore, the tooling is under further development to support scalability and modelling ergonomy.
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