
Dynamic Resource Scheduling Optimization for
Ultra-Reliable Low Latency Communications:

From Simulation to Experimentation
Lam Ngoc Dinh, Rodolphe Bertolini and Mickael Maman
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Abstract—In this paper, we propose a dynamic and efficient
resource scheduling based on Lyapunov’s optimization for Ultra-
Reliable Low Latency Communications, taking into account the
traffic arrival at the network layer, the queue behaviors at the
data link layer and the risk that the applied decision might result
in packet losses. The trade-off between the resource efficiency,
latency and reliability is achieved by the timing and intensity
of decisions and is adapted to dynamic scenarios (e.g., random
bursty traffic, time-varying channel). Our queue-aware and
channel-aware solution is evaluated in terms of latency, reliability
outage and resource efficiency in a system-level simulator and
validated by an experimental testbed using OpenAirInterface.

I. INTRODUCTION

The 5G and beyond network enables the exploitation of
new emerging use cases, such as Ultra-Reliable Low Latency
Communication (URLLC). Advanced resource scheduling op-
timizations are required to jointly reduce latency and improve
reliability while maintaining appropriate efficiency. While
many mechanisms exist in the literature for the first two,
it is still unclear how to efficiently utilize resources while
maintaining reliable, low latency communications [1]. Given
the requirements for delay and reliability, two approaches to
activate available resources are proposed. On the one hand,
reactive strategies activate additional resources on demand,
which enable efficient resource utilization, but significantly
increase latency, as the demand for additional communication
resources is not instantaneous. On the other hand, proactive
approaches systematically apply additional resources to stretch
the latency below the deadline and usually consider the worst
case with a margin. Therefore, this approach implies a high
cost in terms of resource utilization, especially when worst-
case impairments are very rare. Our goal is to design an early
decision maker, as patented in [2], defining one or more deci-
sion moments to dynamically optimize the resource scheduling
by adapting reactive-proactive modes to cope with various
dynamic scenarios. The efficiency-latency-reliability trade-off
is achieved by the timing and intensity of the decisions. The
earlier (resp. stronger) the decision is made, the greater the
latency gain (resp. reliability gain) at the cost of resource
efficiency, and vice versa.

To highlight the benefits of early decision making in re-
source scheduling, Figure 1 illustrates the probability density
function when the system reacts by setting a series of actions
to achieve a latency gain. The clusters represent the latency
when a transmission or several retransmissions (RTXs), are
required for the receiver to decode the packet. At the end

of each cluster, the system knows whether the packet was
successfully delivered or not. Figure 1 shows how decisions
made at different times (e.g., parallel RTXs at actions a1
and a2) can reduce latency at the cost of resource efficiency
(i.e. after action a1, packets that only needed one RTX were
allocated two RTXs).

Fig. 1: Early decision making scheme

In order to highlight the importance of the above-mentioned
trade-off for improving URLLC communications, we inves-
tigate the early decision maker in the well-known Hybrid
Automatic Repeat reQuest (HARQ) retransmission protocol.
In the literature, adaptation of the HARQ strategy is usually
achieved by adapting the modulation and coding scheme
[3], the transmission power [4] and the maximum number
of retransmissions [5] but rarely at the scheduler level. A
K-repetition scheme [6] and a proactive scheme with early
termination [7] have been proposed, allowing for a number of
redundant retransmissions upon receipt of the acknowledgment
by the sender. By doing so, one can opportunistically decode
the packet at the receiver in a shorter time at the expense
of inefficient resource usage [8]. However, the adaptation of
HARQ strategies at the scheduling level in a rapidly changing
environment is limited in current research.

The randomness of bursty traffic and time-varying channel
pose critical problems for URLLC, thus, dynamic scheduling
(i.e. queue aware and channel aware) is required. In [9], they
proposed a Closed-Loop ARQ protocol that dynamically re-
allocates the remaining resources between uplink and down-
link slots upon the result of last uplink transmission. In [10],
the transmission decision of the scheduling under delay and
power constraints is based on data packet arrival, occupancy
of the transmission queue and time-varying channel. In [11],
a joint transmission - computation optimization achieves an
optimal tradeoff between power and latency by taking into
account the system dynamics. Hereafter, we propose a re-
source efficient, delay optimal, reliable scheduling adapted to
dynamic scenarios (e.g., time-varying channel and traffic).



The contributions of this paper are as follows: (1) We formu-
late the dynamic resource scheduling problem by considering
the traffic arrival in the network layer, the queue behaviors in
the data link layer and the risk of applying vulnerable decision
which causes packet loss. (2) The proposed solution includes
resource efficiency considerations for URLLC applications
whereas most solutions in the literature only consider latency
reliability tradeoff. (3) We consider end-to-end performance
by developing a system-level simulator based on NS-3 [12]
applying to the 5G New Radio (NR). This simulator handles
several HARQ processes and measures the latency between
the transmitter Radio Link Control (RLC) layer and the
receiver RLC layer assuming that transmission buffer size
is infinity. We therefore consider both the queuing latency
at the scheduler (due to reactive/proactive approaches) and
(re)transmission latency (i.e. PHY/MAC). (4) We validate that
our solution is implementable in OpenAirInterface framework
compliant with 5G NR solution and we show the gain brought
by our solution with real time hardware constraints.

The remainder of the paper is organized as follows: Section
II presents the dynamic resource scheduling optimization
including the system model, the problem formulation and its
adaptation to HARQ procedure. Sections III and IV show the
performance of the solution in simulation and experimentation
respectively. Section V concludes the paper.

II. DYNAMIC RESOURCE SCHEDULING OPTIMIZATION

A. System Model
In this section, we describe the system model making the

trade-off between the latency, the reliability and the resource
efficiency, as illustrated in Figure 2. A series of actions aj ∈
{a0, ..., amax} is made at the corresponding action slot t. We
can define two queues: The arrival rate queue Q1(t) is the RLC
transmission buffer and contains the application packets. After
completing the scheduler operations at MAC layer, the gNB
prepares a Transport Block (TB) whose data is extracted from
Q1(t) and sends it over the air. The scheduling rate queue
Q2(t) keeps a copy of this TB and takes into account the
ongoing scheduling processes that are not yet decoded at the
UE side. Due to the dynamic nature of not only the traffic but
also the channel behaviour, the lengths of Q1(t) and Q2(t)
can be considered as random variables. The state of Q1(t)
and Q2(t) demonstrated a two-stage queuing system whose
length should be minimized.

Fig. 2: System model
The queuing dynamic is defined as follows:

Q1(t+ 1) = max{Q1(t)− αa.TBa0
, 0}+A1(t) (1)

Q2(t+1) = max{Q2(t)−(1−αa).1TB .TBaj
, 0}+A2(t) (2)

where Qi(t+1) are the backlogs of the queue i at the action
slot t + 1. A1(t) represents the total amount of high layer

packets that arrive Q1 at time t. During this action slot, an
amount of TBaj

will be served. The indicator function 1TB ,
in Equation (2), is equal to 1 if the scheduling process of TB is
successful and is 0, otherwise. If the first transmission of TBa0

is a failure, A2(t) = TBa will be added to Q2, otherwise
A2(t) = 0 as the scheduling process of TBa0

is ending. In
order to control which queue will be served, we introduced the
control variable αa (1 and 0 mean serving Q1(t) and Q2(t)
respectively). Knowing that ongoing processes have a higher
priority, αa = 0 when Q2(t) > 0.

B. Dynamic Resource Scheduling in HARQ Procedure
In this section, we apply the system model to HARQ pro-

cedure. Figure 3A first illustrates the classic HARQ procedure
(i.e. send-wait-react mode). A delay L12 is introduced to
demonstrate the TB preparation time from the gNB scheduler
to the antenna. Then, a feedback will be encoded within an
Uplink Control Information (UCI) message and sent back to
the gNB after Tfb = K1 slot(s), thus illustrating the processing
time at the UE. In 5G NR standard, this processing time
reflects a delay between the reception of the UL grant in
the DL and the transmission of the corresponding UL data.
Afterwards, the gNB has the information about the corrupted
HARQ process on the UE side and decides to retransmit the
erroneous TB after L12 slots. This process continues until
the corrupted TB is successfully decoded by the UE or the
maximum number of retransmissions Rmax is reached. By
doing this, the resources are perfectly utilized, but the latency
could be unacceptable for URLLC communications.

Fig. 3: Classical or Dynamic DL HARQ procedures

Instead of limiting the maximum number of allowed RTXs
Rmax for the scheduling process, our dynamic resource
scheduling is restricted in terms of maximal possible actions
amax. Each action aj ∈ {a0, ..., amax} can allocate raj

proac-
tive RTXs, between rmin and rmax, and a0 corresponds to the
first transmission. The decision maker we designed, dynam-
ically chooses the number of actions aj and their intensities
(i.e, raj

) to reduce latency and improve resource efficiency and
reliability. With respect to the resources allocated for proactive
RTXs of a TBn, the decision maker selects an element-wise
positive resource allocation vector (rn,a0

, rn,a1
, ..., rn,amax

).
If rn,aj

proactive RTXs are allocated by action aj , the risk
(i.e ζ(aj)) is expressed as follows:

ζ(aj)=P[(SINR
∑j

k=0 rn,ak

tbn
≤SINRt) |SINR

∑j−1
k=0 rn,ak

tbn
] (3)

where SINR
∑j−1

k=0(rn,ak
)

tbn
, SINR

∑j
k=0(rn,ak

)

tbn
are respectively

the SINR of TBn at previous (aj−1) and current (aj) action.
SINRt is the target SINR to decode TBn.



Our proposed procedure dynamically adapts the resource
scheduling to the traffic arrival in the network layer, the
queue behaviors in the data link layer and the risk that the
applied decision causes loss. It also automatically adapts the
maximum number of RTXs to the channel conditions. Finally,
to reduce the control overhead due to multiple feedbacks to the
transmitter, we grouped their feedbacks into a single feedback
that represents the current proactive retransmission status.

C. Problem Formulation
The objective is to optimally select raj based on various

factors, such as the current status of the Q1(t), Q2(t), the
current action index aj and the risk that the applied decision
causes loss. The main reliability constraint is to reduce the
risk of the last action ζ(amax) below a predefined value ζo.
However, the constraint associated with poor decision making
must be defined for each upcoming action, not just for the last
action. We define the risk for the current action ζ(aj). In this
case, the procedure has to retrigger other actions later, which
consumes not only time and resources but also the reliability
of the communication, when we are close to the maximum
number of actions allowed. The index of the current action (i.e
aj) is thus very important. Clearly, the higher j is, the greater
the sensitivity of TB loss will be if a wrong decision is applied,
and the earlier the action (i.e low j) is, the higher the total
number of RTXs can be. We define an objective function fobj
as the weighed sum of average number of resources allocated
to each TB and the current risk, as follows:

fobj = lim
N→∞

1

N

N−1∑
n=0

amax∑
a0

rn,aj ×1aj +α×f(aj)×ζ(aj) (4)

where the indicator function 1aj
is equal to 0 if the action

aj is successful (i.e. ζ(aj) < ζo) and is 1, otherwise.
α ≥ 0 is a constant value trading off risk and resource
allocation. A higher value of α implies greater importance
of risk minimization over the number of resources allocated
(i.e. reliability over resource efficiency). The function f(aj)
increases with the action index aj . In our study, we consider
f(aj) = j.

Thus, our optimization problem P1 is to minimize the
objective function fobj subject to several constraints:

min
{rn,aj

}n,aj

fobj (P1)

s.t. lim
t→∞

E{Qi(t)}
t

= 0, ∀i ∈ {1, 2}; (C1,2)

rmin×1aj ≤rn,aj ≤rmax×1aj , ∀aj≤amax (C3)

C1,2 concerns the stability constraint of the queue Q1,2(t).
C3 limits the number of decisions into amax actions and
constrains the maximal number of proactive RTXs at action
aj to rmax.

D. Proposed Algorithm
Our dynamic decision maker algorithm is based on Lya-

punov’s optimization tools, which do not require a-priori
knowledge of stochastic processes in the ongoing system such
as channel dynamics or traffic behaviours, to solve the opti-
mization problem P1. Given a time-slotted system, we define

the current state in the slot t as Θ(t) = (Q1(t), Q2(t))). Next,
we define the one-slot conditional Lyapunov drift ∆(Θ(t))
representing the expected change of the Lyapunov function
over a slot as follows:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t)) | Θ(t)} (5)

Where L(Θ(t)) = 1
2

[
Q2

1(t) +Q2
2(t)

]
is the Lyapunov func-

tion. By minimizing both ∆(Θ(t)) and fobj , we can solve
the problem P1 because the queues are stable in terms of
average rate and the objective function is minimized . How-
ever, according to [13], a performance-delay trade-off between
these dual objective optimizations can be parameterized by a
constant V . By setting a large positive value to V , the control
algorithm will favor minimizing the objective function fobj
over the stability of the average rate queues. Our objective
is then to minimize the following Lyapunov-drift-plus-penalty
function:

g(t) = ∆(Θ(t)) + V.E{fobj | Θ(t)} (6)

As defined in [13], the upper bound, γ(t), can be derived
for any action, any possible value of Θ(t) and any parameter
V > 0 as follows:

γ(t) = B + V.E{fobj | Θ(t)}

+

2∑
i=1

Qi(t).E{Ai(t)− bi(t) | Θ(t)}
(7)

where B is a constant that satisfies:

B ≥ 1

2

2∑
i=1

E{A2
i (t)− b2i (t) | Θ(t)}

−
2∑

i=1

E{Ai(t).min{Qi(t), bi(t)} | Θ(t)}
(8)

Through the opportunistic minimization framework of a
conditional expectation [13], by minimizing γ(t), the upper
bound of the dual objective optimization, we can guarantee
that the optimization problem P1 will be satisfied.

III. SIMULATION RESULTS

A. Simulation Model and Assumptions
The network contains 1 gNB and 1 UE at fixed distance. In

this work, packets are generated in exponentially distributed
ON and OFF periods that follow the Internet Protocol (IP)
traffic model [14]. The average duration of the ON and
OFF periods are tON and tOFF , respectively. In the ON
state, packets of variable size are generated with an arrival
rate λON and fill Q1(t). In the scheduling process, K1 and
L12 are modelled to illustrate the feedback processing time
and data preparation time at the UE and gNB, respectively.
For simplicity, we assumed that the core network latency
and propagation delay are negligible. Table I summarizes
application, optimization and communication parameters.

With respect to the quality of data transmission over differ-
ent Resource Blocks (RBs) is, an effective signal-to-noise ratio
SINReff , which combines individual SINR received from
individual RBs, is modeled using Effective Exponential SINR
Mapping (EESM) method. In HARQ-IR, the SINRr

eff after r



(a) Resource allocation and efficiency (b) Reliability (c) Average latency

Fig. 4: Trade off between resource efficiency, reliability and latency as a function of optimization parameters

TABLE I: Simulation and Experimentation Parameters

Parameters Simulation Experimentation
DL/UL Duplex FDD TDD
DL/Flex/UL N/A 6/1/3 slots per Frame
(fc, BW ) (3.61 GHz, 50 MHz)
Numerology 1
(m, ηS.eff , CR) (5 , 0.7402 , 0.3701) (3 , 0.4902 , 0.2451)
Ptx 8 dBm -8 dBm
(Utx, Srx) (4× 4, 2× 2) (1, 1)

amax 5
(rmin, rmax) (1, 5)
(K1, L12) (2,2) time slots (6,3) time slots
Packet Decoding Risk ζ0 = 10−4 CRC check

Traffic Type ON-OFF PING
Traffic ton/toff= 1/3 Every 50 ms
Parameters Data Rate= 1.5 Mbps 64-Byte packet

RTXs is derived as [15], where SINRr−1
eff is the effective SINR

after the previous RTX, i.e., r− 1 retransmission, SINRx,r is
the SINR experienced by the x-th RB in the r-th RTX, and
ω is the set of RBs. The value of β depends on the MCS
selection.:

SINRr
eff = −β × ln(

1

|ω|
×

∑
x∈ω

e−
SINRx,r+SINR

r−1
eff

β ) (9)

B. Performance Evaluation
Performance is evaluated in terms of RAN latency, packet

loss and resource efficiency. We define resource efficiency as
the ratio of the number of radio resources required for a TB
to be successfully received to the number of radio resources
allocated by the scheduler. We also define RAN latency as the
time between the arrival of IP packets in the RLC layer of the
gNB and their arrival in the IP layer at the UE side.

Figure 4a shows the evolution of resource efficiency (solid
line) as well as the average total number of radio resources
allocated (dash line) as the function of V and α. We selected
three values of α (i.e. 0, 2 and 15) that depend on the
awareness of reliable transmission’s objective. When reliability
is not considered (α = 0), our algorithm tends to spend
less radio resources for each action and thus, resources are
used efficiently. When V increases, we put more emphasis
on minimizing resource allocation, so resource efficiency is
further improved. When α appears and grows, the goal of
reducing packet loss is also taken into account. The decision
maker adapts to the channel conditions and allows more

generous allocations for each action and this leads to high
resource allocation with high standard deviation and low
resource efficiency.

Reliability of communication is guaranteed at the cost of
low resource utilization as shown in Figure 4b. When α
is high, the transmission error is significantly low and the
communication reliability no longer depends on the V -value
(i.e., 99.5% and 98.5% of the total packets successfully reach
the IP layer at the UE side for α = 15 and α = 2,
respectively). However, the dependent relationship between
the transmission reliability and the V-value is observed for
α = 0. In this case, we barely follow the minimization
of the number of resources allocated for each action rather
than the reliability of its transmission, thus, we noticed more
error-prone transmissions when V increases. Figure 4c shows
that the average latency at the RAN mainly depends on α.
Redundant radio resources are scheduled when α is high to
improve reliability, but this can result in increased queuing
delay as incoming packets must wait longer in the queue
before being served.

Figure 5 compares the Complementary Distribution Func-
tion (CDF) of latency for different HARQ schemes: (i) Classic
HARQ procedure, (ii) Fixed number of parallel RTXs, (iii)
Proactive HARQ adaptation with a fixed maximum number
of RTXs (Rmax = 10) as defined in [16] (iv) our proposed op-
timization (Dynamic HARQ) in which Rmax =

∑amax

a0
rn;aj

.
According to Figure 4, we select two pairs of (V, α) parame-
ters: (25, 2) for good reliability and considerably low latency
and (60, 0) for very good resource efficiency and latency. As
expected, the latency of Classic HARQ is the highest and
spreads out over time. 2-parallel and 5-parallel HARQ improve
latency at the cost of decreasing resource efficiency to 0.8 and
0.6, respectively due to the lack of adaptation when needed.
Dynamic HARQ offers two tradeoffs. When V = 60 and
α = 0, we improve resource efficiency and latency but not
reliability. When V = 25 and α = 2, we improve reliability
at the cost of a slight degradation in latency in the best case.

IV. VALIDATION THROUGH EXPERIMENTATION USING
OPENAIRINTERFACE

A. Experimental Testbed
In this section, we propose an experimental testbed of the

resource scheduling optimization using an open and recon-
figurable Software-Defined Radio (SDR) environment. Our



Fig. 5: Simulated latency CDF for different HARQ schemes

implementation is based on OpenAirInterface (OAI) [17],
an open-source framework that aims to provide a pluggable
cellular network solution, to avoid the limitations of vendor
implementations and to allow for protocol customization. OAI
provides an end-to-end 5G NR cellular network implementa-
tion including the Radio Area Network (RAN) and the Core
Network (CN). As shown in Figure 6, our testbed consists
of two high-end computers, one that is used for running an
instance of an OAI UE (green rectangle) and an instance
of an OAI 5G CN (yellow rectangle), one that is used for
running an instance of an OAI gNB (red rectangle); and two
USRP b210, radio head of the UE and the gNB, connected
to the two computers. Since 3.61 GHz belongs to the 5G
licensed C-Band, we use SMA cables instead of antennas
to interconnect USRPs. In our experimental scenario, we use
variable attenuators to experiment several channel conditions
between the UE and the gNB. Packets generated are PING of
64 Bytes every 50 ms.

Fig. 6: OAI experimentation Testbed

We have implemented the different resource scheduling
optimization schemes in the develop version of OAI 5G NR
RAN. This includes (but is not limited to) modifying the
redundant version of a TB and the HARQ process to handle
parallel retransmissions of the same TB by gNB and UE MAC
entity and collecting metrics needed to our algorithm, such as
DL channel status, buffer length (i.e. Q1 and Q2) in the RLC
layer and risk probability based on SINR measurements.

B. Deviations From Simulations
The current status of 5G implementation in OAI coupled

with the limited capabilities of the USRP do not offer the

same freedom as the NS-3 simulator. In this paper, our aim is
not to directly compare the performances between simulation
and experimentation, but to verify if our solution is feasible
in a real environment and to show the gain brought by our
solution with real time hardware constraints.

Our implementation starts from the developed version of
OAI 5G NR RAN. The main difference with simulation
concerns the spectrum usage technique. While simulations
use an Frequency Division Duplex (FDD), OAI uses a Time
Division Duplex (TDD). In a 10-slot frame, the first 6 slots
are dedicated to DL and the last 3 slots to UL. The seventh
slot is a flexible slot (Flex) composed of 6 DL symbols
and 4 UL symbols. According to this implementation, the
Radio Resource Control (RRC) layer of the UE sets K1 to
a minimum of 6 slots to allow OAI sufficient processing time,
and the gNB scheduler sets a delay L12 of at least 3 slots.
Moreover, in our experiment, each TB contains a PING packet
instead of aggregated application packets. Table I summarizes
OAI experimentation parameters.

For the implementation of our different resource scheduling
optimization schemes, Equation (3) needs the DL channel
status. The Channel Quality Indicator (CQI) is usually cal-
culated with the SINR of the transmission occurring in the
Downlink Shared Channel (DLSCH) to be acknowledged in
the current UCI. As the CQI in the UCI is not implemented
in the current version of OAI, we extrapolate it using the
UL channel estimation performed by the gNB in our TDD
configuration and we estimate the risk (i.e ζ(aj)) based on
online statistics.

C. Performance Evaluation
Figure 7 depicts the resource allocation and resource effi-

ciency as a function of optimization parameters (i.e. V and α).
Due to the implementation deviations detailed in the section
IV.B, the size of the queues, and thus the weights V and α,
are different from those of the simulations.

Fig. 7: Resource efficiency and resource allocation per TB as
a function of optimization parameters

For α = 0, the decision maker does not consider reliability
and mainly optimizes resource efficiency. When V increases,
the decision maker allocates fewer resources, which leads
to greater resource efficiency. For this experiment, the right
average level of the number of resources allocated is between
3 and 4. When α increases, the decision maker trades off



reliability (which needs more resources) and efficiency (which
limits the number of resources allocated). So the larger alpha
is, the less efficient the scheduling is.

Figure 8 shows the latency CDF obtained by experimen-
tation with OpenAirInterface for different HARQ procedures
(i.e. Classic HARQ, 2,5-Parallel HARQs, Proactive HARQ
with V = 0.06, Dynamic HARQ with V = 5 and α = 100).
In this experiment, the latency is measured at the MAC layer,
instead of the upper application layer. The approximate 3 ms
staircase shape of the curve is explained by the TDD DL/UL
duplexing of our experiment. Indeed, since (K1, L12) is (6,3)
time slots, there are, for example, 3 ms (i.e. 6 consecutive DL
slots) before the UL transmission.

Fig. 8: Experimental latency CDF for different HARQ
schemes

We can see that the stronger the action, the lower the latency.
The gain in latency is 30% and 55% between Classic HARQ
and 2,5-Parallel schemes, respectively. The average latency
of successfully completed HARQs is 29.5 ms, 21.7 ms, and
17.8 ms for Classic HARQ and 2,5-Parallel HARQs, respec-
tively. Proactive HARQ automatically adjusts the intensity of
each action and trades off resource efficiency and latency, but
it is limited by the maximum number of RTXs (Rmax = 10).
Due to this limitation, it achieves the same upper bound of
88% HARQ completion as the other schemes. The average
latency of Proactive HARQ with V = 0.06 is 21.7 ms,
similar to that of 2-Parallel HARQ. A close upper bound is
achieved by our Dynamic HARQ with V = 5 and α = 1.
By setting α greater than 1 (i.e. 100), our dynamic decision
maker outperforms other reliabilities, since it reaches 95% of
completion, while ensuring an average latency of 18.2 ms.

V. CONCLUSIONS

In this paper, we propose a reliable, resource and delay-
optimized scheduling suitable for dynamic scenarios (e.g.,
random bursty traffic, time-varying channel) based on Lya-
punov optimization for Ultra-Reliable Low-Latency Commu-
nications. It takes into account the traffic arrival at the network
layer, the queue behaviors at the data link layer and the risk
that the applied decision might trigger packet loss. The trade-
off between the resource efficiency, latency and reliability is
achieved by the timing and intensity of decisions and can be
parameterized with V and α. Our queue-aware and channel-
aware solution is evaluated in a system-level simulator and

validated by an experimental testbed using OpenAirInterface.
In future work, we will extend our solution to multiple users
and accesses. Specifically, we will focus on the dual mode
of grant-based access (i.e. scheduled) and grant-free access
(i.e. opportunistic with collisions) in 5G-NR and study how
competing users can opportunistically share resource pool.
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