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ABSTRACT

Deep neural networks (DNNs) algorithms are expected to be core
components of next-generation applications. These high perfor-
mance sensing and recognition algorithms are key enabling tech-
nologies of smarter systems that make appropriate decisions about
their environment. The integration of these compute-intensive
and memory-hungry algorithms into embedded systems will re-
quire the use of specific energy-efficient hardware accelerators. The
intrinsic parallelism of DNNs algorithms allows for the use of a
large number of small processing elements, and the tight exploita-
tion of data reuse can significantly reduce power consumption. To
meet these features, many dataflow models and on-chip commu-
nication proposals have been studied in recent years. This paper
proposes a comprehensive study of on-chip communication prop-
erties based on the analysis of application-specific features, such
as data reuse and communication models, as well as the results
of mapping these applications to architectures of different sizes.
In addition, the influence of mechanisms such as broadcast and
multicast on performance and energy efficiency is analyzed. This
study leads to the definition of overarching features to be integrated
into next-generation on-chip communication infrastructures for
CNN accelerators.
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1 INTRODUCTION

Artificial intelligence (AI) algorithms are expected to be essential
components of next-generation applications, such as pedestrians
detection for a self-driving car or activity recognition for a heath
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tracking smartwatch. These examples will rely on intelligent pro-
cesses to make decisions based on the knowledge of their envi-
ronment, which will be gathered thanks to sensors. In particular,
Deep Neural Networks (DNNs) and especially Convolutional Neu-
ral Networks (CNNs) [13] are good candidates to be embedded in
such systems due to their excellent performances in detection and
recognition tasks. They are based on layers of filters that perform
feature extraction and then classification. These operations need a
lot of computations and memory, and embedding such algorithms
into systems requires the use of accelerators. These accelerators are
mainly computing the multiply-accumulate (MAC) operations that
are prominent in CNN algorithms. The objective of these accelera-
tors is to improve the execution performance of DNN algorithms to
meet application constraints and improve the energy efficiency of
the system. They are mainly based on a high number of processing
elements (PEs) involving MAC operators and a memory hierarchy
for efficient data storage. Communications between the PEs and
between the PEs and the memory is a very important aspect to con-
sider when designing a CNN accelerator. In fact, CNN algorithms
have high intrinsic parallelism together with data reuse possibilities.
Thus, most hardware accelerators are based on MAC-array of PEs
and use local buffers to store data that are frequently reused such
as filter parameters or intermediate data [11]. On-chip communica-
tion infrastructure must be carefully designed to exploit the high
number of PEs and the particularities of CNN algorithms, which
help to improve both performance and energy efficiency. For exam-
ple, multicast or broadcast of particular data in the communication
network will allow target PEs to process different data with the
same filter simultaneously using a single memory read. Therefore, a
tight analysis of communication patterns in both the CNN topology
and the target accelerator architecture is paramount to perform
efficient application-algorithm matching. Additionally, this analysis
will help to define the specific properties and features to include
and implement in future communication infrastructures for CNN
accelerators. This paper presents a comprehensive analysis of on-
chip communication properties in DNN accelerators. This study is
based on several experiments using the MAESTRO cost estimation
infrastructure [6], which enables the gathering of extensive met-
rics resulting from the mapping of DNN algorithms on a dataflow
architecture. Different architectural configurations are evaluated
to highlight overarching features to be included in future on-chip
communication architectures in DNN accelerators. The remainder
of this paper is as follows. Section 2 describes the state-of-the-art
of CNN accelerators. Section 3 presents a recall of what is a CNN
algorithm together with a common dataflow taxonomy. Section 4
introduces the evaluation environment for this study and presents
the results of the experiments. Section 5 evaluates these results with
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respect to future DNN accelerators. Finally, Section 6 concludes the
paper.

2 RELATED WORK

The use of an interconnection network in dataflow CNN architec-
tures is essential to efficiently manage data transfers in the PE grid
and memory accesses [4]. These interconnection networks must
ensure parallelism, data reuse, and flexibility/scalability. Several
works have proposed different communication solutions in many
neural network accelerators. Eyeriss ([11], [12] is designed to opti-
mize power consumption. Eyeriss vl manages several data flows
through different type of communication (unicast, multicast and
broadcast) using a bus-based interconnection network while v2
integrates hierarchical mesh interconnection network. However,
transferring the results to the external DRAM is costly and gener-
ates latency. ShiDianNao [15] and DaDianNao [9] are developed to
optimize energy efficiency and reduce execution time. DaDianNao
uses a mesh network and an H-Tree network. The switch allocation
of the router can only handle the data traffic one by one causing
a latency increase. ShiDianNao uses a NoC-based interconnection
network to exploit the data reuse inter-PE and reduce the memory
access. However, the arrays used on this accelerator are small, mak-
ing the ShiDianNao architecture less reconfigurable and scalable.
SIMBA [14] uses hierarchical interconnection Network-on Package
(NoP) and Network-on-Chip (NoC). Both NoC and NoP use a mesh
topology with 2D-XY routing and hybrid wormhole/cut-through
flow control. Simba offers several options for CNNs mapping with
different performance and energy profiles. This mapping can in-
duce multiple chiplets to improve performance, which increases
the energy cost and communication latency between the chiplets.
Neu-NoC [10] implements a hybrid topology between mesh and
ring: a global mesh interconnects local rings. Two types of routers
based on wormbhole flow control support multicast transmission
to share the same data transmission path. However, there are high
latency and limited bandwidth due to the ring topology. MAERI [5]
is a DNN accelerator using modular and configurable blocks that
can easily support different DNN mappings. A multicast-friendly
fat tree is used as the base topology. MAERI offers more flexibil-
ity, but its implementation is complex and area-consuming. The
presented architectures use different approaches for their internal
interconnections to support efficient data communications, to im-
prove performance or to reduce energy consumption. There is a
trade-off between the related optimizations and the required flexi-
bility in terms of scalability and the ability to manage data transfers
resulting from new DNN algorithms. In fact, most of the archi-
tectures are designed to accelerate 2D-convolutions of common
dimensions such as 3X3 or 5x5. They tend to connect PEs through
a grid network (Mesh) to take advantage of spatial parallelism,
and employ different dataflow models to exploit the data reuse
for energy efficiency. This structure allows for a more flexible and
scalable architecture but the efficient use of available PEs depends
on how the DNN algorithm is mapped onto the architecture. An
architecture, which is optimized for large input feature maps with
a small number of channels, will perhaps become inefficient in
deeper layers when the number of channels increases while the
dimensions of the feature maps decrease.
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3 ON-CHIP COMMUNICATION AND DNNS

When designing a DNN (or a CNN) accelerator, it is essential to
understand the structure of the algorithms, the different mapping
strategies, and the communication requirements.

3.1 Convolutional Neural Networks

CNNss are a subclass of DNNs that are designed to process data such
as input images and, in particular, to classify them. The architecture
of a common CNN is based on two blocks: the feature extractor and
the classifier at the end of the network. These blocks are based on
computational layers. The convolution layer processes input feature
maps (e.g., an image for the first layer) by applying convolution
filters. These filters are used to extract the features that characterize
the objects. The first convolution layers extract low-level features,
while the deeper convolution layers work with more abstract fea-
tures that are provided to the classification block. For each pair
(image, filter), the output is an activation (or feature) map, which
locates the features in the image: the higher the pixel value, the
more the corresponding location in the image matches the feature.
The features to be detected are learned by the network during the
training phase, which is usually based on back-propagation algo-
rithms. The pooling layer down-samples the input feature maps
thanks to a maximum or average pooling operation to make the fea-
ture maps more robust to the location of the features to detect.The
ReLU (Rectified Linear Units) correction layer activation function
refers to the non-linear real function defined by ReLU(x)=max(0,x).
It is widely used in modern CNN because of its good performance
for recognition and its implementation efficiency in hardware. The
fully connected layer is a linear combination (i.e., a weighted sum)
of the input values. The result is then processed by an activation
function. These layers are frequently used as classification layers.
Specific layers have also been introduced in recent years to improve
the performance or to optimize the computational cost, for example,
the residual [7], and depthwise/pointwise [1] layers.

3.2 Dataflow execution and data reuse

CNNss use three types of data: filter coefficients, input feature maps
(Ifmaps), and partial sums (Psums) that constitute the output feature
maps (Ofmaps). Efficient dataflow models are needed to exploit data
reuse between processing elements (PEs) and parallelism at a low
energy cost. The Weight-Stationary model used in NeuFlow [3] is
designed to maximize reuse of convolution and filter weights. The
Input-Stationary model, used in SCNN [2], maximizes Ifmaps reuse
by distributing them on the different PEs. In the Output-Stationary
model, used in ShiDianNao [15], the filter weights are broadcast,
and the Ifmaps are reused throughout the network of PEs. Unlike
the above models that are optimized for reusing one type of data,
the Row-Stationary model (RS), used in Eyeriss [11], optimizes the
reuse of the three types of data (weights, Ifmaps, and Psums). A
set of PEs perform a 2D convolution and each filter row is reused
horizontally, each input activation row is reused diagonally, and the
Psum rows are accumulated vertically. The dimensions of the set
of PEs are determined by the filter size and Ofmaps. The RS model
allows reducing data movements and thus energy consumption.
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3.3 Requirements for CNN accelerators

The implementation of optimized dataflows on hardware architec-
tures rely on different features of the communication infrastructure
and the support of communication types.

3.3.1 Types of communications in CNNs. Efficient distribution of
data for dataflow models execution requires flexible communication
types. Unicast ensures one-to-one communication and is useful
when retrieving partial sums (Psums) after a computation has been
distributed to different PEs. A PE sends its result to another PE,
which will accumulate this result with its own. Multicast enables
one or more PEs to send data to a group of PEs. It is used to send the
same Ifmaps to a set of PEs, each of which will convolve these inputs
with a given filter. Broadcast ensures one-to-all communication
and allows distributing filter weights or input activations to the
other PEs, thus minimizing memory accesses. The efficiency of
dataflow architectures strongly depends on the communication
structure. The faster and simpler the communication is to manage,
the more efficient the model is. Improving the performance of
dataflow accelerators implies studying the structure of the various
communication networks.

3.3.2  Communication performance metrics. Classical metrics
for performing design choices are the PPA: Performance, Power,
and Area. For the interconnect, flexibility or scalability are also
important. An interconnection network is also characterized by
its ability to deliver a massive amount of data (bandwidth) with
low latency. To perform a deep analysis of communication proper-
ties to include in future DNN accelerators, different metrics were
considered. Scalability represents the capacity of the NoC to be effi-
ciently extended to adapt its performances according to the number
of communicating elements. Flexibility represents the degree of
adaptation of the NoC to support different communication patterns.
Latency corresponds to the time elapsed between the packet input
in the NoC and its reception by the receiving element. Bandwidth is
the amount of data successfully transferred in a given period. Area
contributes to the cost of the circuit to be manufactured. Energy
consumption is a paramount metric to evaluate when targeting em-
bedded systems. Increased power leads to increased temperature,
which can compromise the reliability and durability of the chip.
These metrics were computed using an evaluation environment
and different DNN algorithms from the state-of-the-art, which are
described in the following section.

4 EVALUATION ENVIRONMENT

This section presents the evaluation environment used in this study.

4.1 Cost estimation tool

All the experiments were conducted using the RS dataflow model,
which leverages data reuse and thus is efficient concerning perfor-
mance and energy consumption. For estimating the cost of mapping
a DNN on architecture, the MAESTRO [6] (Modeling Accelerator
Efficiency via Spatio-Temporal Resource Occupancy) infrastructure
was used. MAESTRO is an open-source tool for modeling and evalu-
ating the cost of mapping a DNN algorithm on a generic accelerator
architecture. It performs a per-layer analysis of the mapping and
outputs several metrics such as execution time, throughput, number
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of data accesses, energy, area, etc. This analysis uses the model of
the DNN algorithm, the dataflow model (expressing the mapping of
the algorithm), and the model of the hardware accelerator. Perfor-
mance and cost reports are generated by performing optimization
operations in the application mapping to a given architecture to
maximize data reuse and parallel computations.

4.2 Modelling DNN accelerators

MAESTRO models a generic dataflow accelerator architecture based
on several computing elements composed of a PE and its L1 pri-
vate memory. These elements are interconnected using a generic
NoC and can read and write data to a global L2 shared buffer.
MAESTRO can optionally model accelerators comprising hierar-
chical levels with uniform clusters of computing elements with
private NoCs. Instantiating a clustered hierarchical architecture is
done using the cluster directives and the corresponding size of the
dataflow/mapping description.

Cluster 0
L2 (shared buffer)

Cluster 0_0
Router buffer

e “. \—w e e

Figure 1: The overview of the 2D hierarchical architecture.

Cluster 0_M-1
Router buffer

Fig. 1 presents the considered hardware accelerator. It is a 1-level
2D architecture with 8-PE clusters. Different configurations were
instantiated, the number of PEs being multiple of 8. The presented
architectures have fixed memory sizes: 7104KB for the L2 global
buffer and 256KB for the PE L1 local buffer. These are the minimum
sizes required by MAESTRO to run the chosen DNN models. The
purpose of the analysis is to focus on internal communications
and not on possible communications with an external DDR. There-
fore, a large global L2 buffer was chosen, even for small 64 PEs
architectures. Since the objective of this work is to characterize the
communication infrastructure, the NoC bandwidth was set from
8B/Cycle to 64B/Cycle, and the NoC size, which is relative to the
number of PEs, was varied from 8x8 to 32x32. The multicast option
was enabled to ensure efficient support of spatial data reuse.

4.3 DNN algorithms and mapping models

State-of-the-art CNNs were used in this study, with different sizes
and types of layers and shapes. Two of them come from the MAE-
STRO database: ResNet-50 [7] and VGG-16 [8]. Two other DNNs
were designed: LeNet-5 [13] and MobileNet-V1 [1]. These CNNs
were chosen to have a collection of data resulting from a range of
small to large CNNs and using a set of layers including classical
2D convolution (CONV2D) and fully connected (FC) layers but
also point-wise (PW) and depth-wise (DW) convolution layers in
MobileNet-V1 and residual (RES) links in ResNet-50. Table 1 de-
tails the characteristics of these DNNs algorithms, including the
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types and numbers of layers. RS-dataflow model was chosen for
the experiments.

Table 1: Characteristics of the used CNNs

Layer type LeNet-5 MobileNet-V1 VGG-16  ResNet-50
CONV2D 3 1 13 16
PW - 13 - 32
DwW - 13 - -
RES - - - 16
FC 2 1 3 1

5 EVALUATION RESULTS

The experiments consisted of estimating the costs of the mapping
of the selected DNN algorithms presented in Table 1 on the architec-
tural configurations as presented in the subsection 4.2. In this paper,
we present the performance and efficiency graphs of MobileNet-V1
and ResNet-50 DNN models, since they contain several different
layers and provide more results to allow for an in-depth study of the
communication requirements and the impact of the interconnection
on their performance and efficiency.

5.1 Throughput performance

The throughput (operations MACs/Cycle) of CONV2D, PW, DW,
and FC layers of MobileNet-V1 is presented in Fig. 2 with respect
to the different architectural configurations. Fig. 2a shows that the
throughput of the CONV2D layer is increasing with the bandwidth
of the NoC. The number of PEs does not have a great impact on
the throughput: an 8x8 PEs configuration is sufficient to efficiently
execute MobileNet-V1. The FC layer shows no performance im-
provement with respect to the number of PEs and the performance
is saturated for a bandwidth of 32B/Cycle (Fig. 2d). The throughput
is strongly related to the bandwidth and depends on the NoC size in
CONV2D layers (since these layers execute matrix distributed data).
The more these data streams are processed in parallel, the better
the performance. This degree of parallelism depends on the number
of PEs in the architecture (NoC size). However, the throughput
remains low when the dataflow uses a limited number of PEs (e.g.
a single PE is used for the FC layer). Thus, the size of the array is
not a critical factor for the mapping of this DNN (same results for
different numbers of PEs). Regarding the parallelism efficiency, the
throughput clearly does not augment linearly with the number of
PEs. It is roughly x2 when the number of PEs is x4 for convolution
layers. Fig. 2b and Fig. 2c shows that the PW and DW layers have
almost the same behavior as the CONV2D layer, since they are
based on the same type of matrix computations. The DNN model
of ResNet-50 comes from the MAESTRO database. Fig. 3 presents
the throughput of CONV2D, PW, RES and FC layers of ResNet-50
on the different architectural configurations. Fig. 3a shows that
the throughput of the CONV2D layer is rising with the bandwidth
of the NoC. The behavior of CONV2D and FC (Fig. 3d) layers is
inversed with respect to MobileNet-V1. There is a saturation of the
throughput with a high number of PEs for the CONV2D layers of
ResNet-50 while the throughput rises without saturation of the FC
layer. As shown in Fig. 3b and Fig. 3c, the throughput in PW and
RES layers does not seem to be influenced by the number of PEs,

Krichene and Philippe

while the bandwidth of the NoC enables to have a performance
increase on these two layers. For a fixed number of PEs and given
bandwidths 32B/Cycle and 64B/Cycle, throughput decreases with
the CONV2D and DW late layers (unlike the FC and RES layers,
where the higher the bandwidth, the higher the throughput). This
can be explained by the fact that the FC and RES layers require
more bandwidth compared to the other layer types due to their
limited amount of data reuse involved in the operation. The DNN
model of LeNet-5 was implemented in MAESTRO to study the im-
pact of interconnect on a small network, while the DNN model of
VGG-16 was selected from the MAESTRO database to study the
variability of throughput over multiple convolution layers. We find
the two-layer types: CONV2D and FC. The implementation results
show that the NoC size and bandwidth influence the throughput
in the processing of the CONV2D layers. We also notice that the
throughput is higher for early CONV2D layers than late layers for
the same architectural configuration. This variation is coherent
with the data reuse factor being lower in the early layers, which
requires high bandwidth. Unlike the CONV2D layers, the through-
put in the FC layers of the LeNet-5 network only depends on the
bandwidth. When the bandwidth is small, the throughput decreases
significantly. However, increasing the number of PEs does not in-
crease throughput and degree of parallelism because the chosen
dataflow style uses a limited number of PEs for the FC layers (e.g.,
one PE is used in the row stationary (RS) dataflow style). In this
case, the other PEs can be underutilized.

5.2 Area and power efficiencies

The previous section presented the performance behavior of differ-
ent architectural configurations regarding the execution of state-of-
the-art DNN. MAESTRO is also able to estimate the area and the
energy consumption of these architectural configurations, allowing
computing and comparing their area and energy efficiency. Based
on the results retrieved from the MAESTRO tool, we made the
power and area efficiency graphs to identify the best architectural
configuration, especially the NoC configuration, for processing
the layers of the CNN networks selected for this study. Fig. 4 and
Fig. 5 represent the area and power efficiencies of different archi-
tectural configurations executing MobileNet-V1. The results are
shown in different graphs, representing the different types of lay-
ers: CONV2D, PW, DW, and FC. The graphs of the CONV2D layer,
presented in Fig. 4a and Fig. 5a, show that the smaller the architec-
ture, the better the performance to reach a factor x10 between a
32x32 PEs configuration and an 8x8 PEs configuration. We observe
the same behavior on the different PW and DW layers, and this
can be explained by the use of the same convolution operator on
2D-shaped data similar to CONV2D. Unlike convolution layers,
FC layers can reach their maximum performance not only with
small configurations but also with a bandwidth that should not
exceed 32B/Cycle, as shown in Fig. 4d and Fig. 5d. Through these
results, we find that the most efficient interconnection configura-
tion is that of size 8x8 with a variable bandwidth value depending
on the network layer. For example, for convolution layers, where
there is a large amount of data to process, a large bandwidth of
size 64B/Cycle is required. While for fully connected layers, com-
munication is less important. A bandwidth of size 16B/Cycle or
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Figure 2: Throughput of CONV2D, PW, DW and FC layers of MobileNet-V1 on the different architectural configurations.
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Figure 3: Throughput of CONV2D, PW, RES and FC layers of ResNet-50 on the different architectural configurations.

32B/Cycle may be sufficient. We draw the same conclusions on the
LeNet-5 and VGG-16 DNN models. The most suitable configuration
for the CONV2D layers is 8x8 PEs and 36B/Cycle bandwidth, while
for the FC layers and 8x8 PEs with 16B/Cycle bandwidth. Fig. 6
and Fig. 7 represent the area and power efficiencies of different
architectural configurations executing ResNet-50. The results are
shown in different graphs, representing the different types of layers:
CONV2D, PW, RES, and FC. The graphs of the PW and RES layers
in ResNet-50 follow the same behavior as that of the convolution
layers in MobileNet-V1 (i.e., the smaller the configuration, the better
the architecture performance). However, the CONV2D (Fig. 6a and
Fig. 7a) layers do not follow the same behavior. Indeed, the area
efficiency reaches its maximum with a configuration of size 8x8 PEs
and a maximum bandwidth of 32B/Cycle. In addition, the energy
efficiency is at its maximum with the same number of PEs but with
a bandwidth of 64B/Cycle. The surprise is noticed at the FC layer
(Fig. 6d and Fig. 7d), which does not represent an efficiency limit
with the increase of the bandwidth, despite the different shapes
of its data compared to the convolution layers. To understand the
variability in energy efficiency, we studied the energy consumption
behavior of the execution of DNN models studied in this paper on
different architectural configurations. The cost results provided by
MAESTRO show that the power consumption remains invariant
regardless of the architectural configuration. It only varies with the
type of network layers. This variation is due to the input and filter
reuse factor, i.e., the number of memory accesses. The lower this
factor is, the more data is extracted from L2 and the higher the en-
ergy consumption. We notice this energy increase in the PW layers
of MobileNet-V1, and the RES and FC layers of Resnet-50. In these
layers, there are a high number of MACs using many filter weights.
These weights have the lowest reuse factor in the network, which
induces a lot of external accesses to the L2 memory to retrieve this
data.

Through this study, we note that there is no one best architecture
to handle all neural networks or to handle all layers of the same

network. Several parameters will be considered when choosing a
hardware configuration, such as the size of the layers, the amount
of data to be processed, the degree of parallelism in the processing,
the number of memory accesses, and the ifmaps and weights reuse
factor. All these parameters will decide which architecture should
be chosen to perform which processing. This variability requires a
flexible and scalable architecture to meet the application needs.

6 CONCLUSION

This paper presented a study of on-chip communication properties
in DNN accelerators, based on the MAESTRO cost estimation in-
frastructure. Different architectural configurations are evaluated to
highlight features to be included in future on-chip communication
architectures for DNN accelerators. The results show that dataflow
architectures will have to ensure sufficient bandwidth to not com-
promise the computation, to be flexible and scalable to adapt to the
variability of CNNs, and to limit access to external memories to
reduce power consumption. A dedicated dataflow NoC is needed
to offer multiple data access (broadcast/multicast) and high band-
width to support parallel processing in the CNN accelerators. It
must support data reuse to reduce memory access and power con-
sumption and must be configurable to facilitate the mapping of
different network topologies, allowing the required adaptability on
the dataflow and scalability to a large number of PEs.
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(a) MobileNet-V1 CONV2D layer. (b) MobileNet-V1 PW layers. (c) MobileNet-V1 DW layers. (d) MobileNet-V1 FC layer.

Figure 5: Power Efficiency of CONV2D, PW, DW and FC layers of MobileNet-V1 on the different architectural configurations.
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(a) ResNet-50 CONV2D layers. (b) ResNet-50 PW layers. (c) ResNet-50 RES layers. (d) ResNet-50 FC layer.

Figure 6: Area Efficiency of CONV2D, PW, RES and FC layers of ResNet-50 on the different architectural configurations.
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(a) ResNet-50 CONV2D layers. (b) ResNet-50 PW layers. (c) ResNet-50 RES layers. (d) ResNet-50 FC layer.

Figure 7: Power Efficiency of CONV2D, PW, RES and FC layers of ResNet-50 on the different architectural configurations.

Architecture (ISCA). IEEE, Toronto, ON, Canada. [10] X.Liu et al. 2018. Neu-NoC: A high-efficient interconnection network for accel-
[3] C.Farabet et al. 2011. NeuFlow: A runtime reconfigurable dataflow processor for erated neuromorphic systems. In 23rd Asia and South Pacific Design Automation

vision. In Computer Society Conference on Computer Vision and Pattern Recognition Conference (ASP-DAC). IEEE, Jeju, Korea (South).

Workshops (CVPRW). IEEE, Colorado Springs, CO, USA. [11] Y. Chen et al. 2017. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for
[4] D. Vainbrand et al. 2010. Network-on-Chip Architectures for Neural Networks. In Deep Convolutional Neural Networks. IEEE Journal of Solid-State Circuits 52, 1

Fourth ACM/IEEE International Symposium on Networks-on-Chip. IEEE, Grenoble, (Nov. 2017), 127-138.

France. [12] Y. Chen et al. 2019. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural
[5] H.Kwon et al. 2018. MAERI: Enabling Flexible Dataflow Mapping over DNN Networks on Mobile Devices. IEEE Journal on Emerging and Selected Topics in

Accelerators via Reconfigurable Interconnects. In ASPLOS’18: Proceedings of the Circuits and Systems 9, 2 (2019), 292-308.

Twenty-Third International Conference on Architectural Support for Programming [13] Y. Lecun et al. 1998. Gradient-based learning applied to document recognition.

Languages and Operating Systems. ACM, 461-475. Proc. IEEE 86, 11 (Nov. 1998), 2278-2324.
[6] H.Kwon et al. 2018. MAESTRO: An Open-source Infrastructure for Modeling [14] Y.S. Shao et al. 2019. Simba: Scaling Deep-Learning Inference with Multi-

Dataflows within Deep Learning Accelerators. (May 2018). arXiv:1805.02566v1. Chip-Module-Based Architecture. In MICRO’52: Proceedings of the 52nd Annual
[7] K. He et al. 2016. Deep Residual Learning for Image Recognition. In IEEE Confer- IEEE/ACM International Symposium on Microarchitecture. ACM, 14-27.

ence on Computer Vision and Pattern Recognition (CVPR). IEEE, 770-778. [15] Z.Du et al. 2015. ShiDianNao: Shifting Vision Processing Closer to the Sensor. In
[8] K. Simonyan et al. 2015. Very Deep Convolutional Networks for Large-Scale Proceedings of the 42nd Annual International Symposium on Computer Architecture.

Image Recognition. In International Conference on Learning Representations (ICLR). Association for Computing Machinery, Portland, OR, USA, 92-104.

San Diego, CA, USA. arXiv:1409.1556.
[9] T.Luo et al. 2017. DaDianNao: A Neural Network Supercomputer. IEEE Trans.

Comput. 66, 1 (Jan. 2017), 73-88.

14



