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Abstract—Congestion problems are increasing in number in
power transmission networks due to the increment of renewable
power sources along it. To reduce their impact, Transmission
System Operators (TSOs) as the French RTE use network recon-
figuration or renewable power curtailment in complex subtrans-
mission areas. The operators need enhanced methodological tools
to better address the optimal power flow management problem
by also using novel levers as for example the storage devices.
This paper proposes mathematical models which integrate the
possibility to partially curtail the renewable power in the form
of a dynamical system representing the transmission network,
also considering storage devices.

Index Terms—Modeling, transmission network, partial curtail-
ment, energy storage.

I. INTRODUCTION

An increasing number of transmission networks are or
will be congested in the near future due to the increase of
renewable generation. For example, in France, wind turbines
are usually built in rural areas, where the electrical grid is less
developed [1]. Consequently, wind turbines aggregation may
require the addition of new lines to enable produced electricity
delivery. To limit this necessity and the extra costs it requires,
new congestion management methods implementing advanced
constraints handling techniques are nowadays investigated [2],
[3], [4], [5], [6]. These new congestion management methods
are model-based, and allow for a better utilisation of the
available resources, in terms of maximizing the renewable
power production and reduction of impact on the transmis-
sion lines. They consider the possible power curtailment for
renewables and use storage devices in online optimization
strategies by including power lines constraints, control action
delays, and uncertainties due to power generation and model
approximations.

Interest is raising on the possibility to split the whole
transmission network in several subtransmission areas, and to
optimally manage them via Model Predictive Control (MPC)
[7]. In the current literature, due to the unique possibility
to have on/off decisions for power curtailment, the existing
models only consider generation ramping and no information
is kept about the amount of real-time generated power. For
example, the works in [2] and [3] describe a dynamical
model based on Power Transfer Distribution Factor (PTDF)
(see [8, 9]) that allows only on/off curtailment decisions, and

consequently eludes the manipulation of elements on power
generation. As the possibility to consider partial curtailment
can now be envisaged by the Transmission System Operators
(TSOs), the present paper introduces a dynamical model de-
scribing the whole set of elements that are needed to partially
curtail the renewable power. The proposed approach is based
on PTDF modelling framework, and targets the possibility to
use model-based optimisation techniques to optimally manage
a subtransmission area congestion situation via renewable
power partial curtailment and storage devices.

The target of the present paper is to provide a dynamical
model that dependably describes the system functioning and
is suitable for model-based optimal management of a zone.
Due to communication constraints, only a local description of
the zone is available and the connection with the remaining
network is defined as a perturbation acting on the zone. The
main challenge in controlling an isolated zone is to operate
local control actions with respect to the global power flow
taking place at the boundaries of the zone. Indeed, due to
security and practical reasons, it is not possible to take decision
based on the state measurement at the scale of the whole
network. Consequently, to obtain a close-to-reality dynamical
model for the considered zone is a challenging problem.
Moreover, we propose a control-oriented modeling approach.

The ultimate goal of the present paper is to validate a model
capable to consider the possibility for transmission networks
to partially curtail power from renewables and to use storage
devices for online optimization strategies that consider power
lines constraints, control action delays, and uncertainties due
to power generation and model approximations.

The paper is organized as follows. Section II introduces
the considered modeling. Simulations validating the linearized
dynamics are carried out in Section III, while concluding
remarks are outlined in Section IV.

Notations:
• ZN is the set of nodes in the considered zone; nN is its

cardinality. PT is the power generated in the transmission
network outside the considered zone that impacts on it.

• ZC ⊂ ZN is the set of nodes where the curtailment of
the generated power is allowed; nC is its cardinality. PGn
is the generated power, while PCn is the curtailed one at
node n ∈ ZC . PAn is the available renewable power that



Fig. 1. The considered zone (blue nodes) and its connection to the entire
power network (red nodes). Each node is described by its number. The
considered dynamical system describes the dynamics of the blue nodes and
the branches among them. The power flow interaction among the blue nodes
and the magenta nodes is described as an uncontrolled generated/absorbed
power.

can be generated each sampling time. Also, we define
PPn as the really produced renewable power.

• ZB ⊂ ZN is the set of nodes with a battery; nB is its
cardinality. PBn is the power injected from the battery on
node n ∈ ZC , while EBn describes the battery energy at
the same node.

• ZL ⊂ {(i, j) ∈ {1, ..., nN} × {1, ..., nN}} is the set of
power lines in the considered zone; nL is its cardinality.
Fij represents the power flow on the line ij.

We use the operator diag to describe a diagonal matrix com-
posed by the considered elements. The operator col produces
a single column vector composed by the aggregation of other
vectors. That is, given m vectors si ∈ Rn, i = 1, ...,m, the
resulting vector s = col[si], i = 1, 2, . . . ,m, will be:

s = col[si] = [ sT1 sT2 ... sTm ]T ∈ Rnm. (1)

II. MODELING

The models introduced in this Section describe a situation
where partial curtailment is allowed. Both the power that could
be produced and the one that is actually delivered are taken
into account.

Approximate linear models resulting in a Direct Current
(DC) description of the Alternate Current (AC) nonlinear
ones are usually considered to operate model-based control
of subtransmission areas named zones. Variations in power
flows are represented by a linearization, where the matrices
computation is based on PTDF (see [8, 9]). PTDF models
are commonly used in power systems network modeling and
analysis; a description is given in [2, 8, 9]. We use the realistic
tool MATPOWER (see [10]) with the full French grid data set
to simulate the power transmission line under various scenarios

and to calculate the parameters for the matrices. For the
exemplification, a subtransmission area (zone) is depicted in
Figure 1, geographically close to Dijon, France. It is composed
by six nodes with loads, generators and a battery. Due to
communication constraints, only a local description of the zone
is available and the connection with the remaining network is
defined as a perturbation acting on the zone.

In the sequel, we introduce two models describing the
power and energy dynamics in the selected zone. The first
model considers both the available renewable power and
the actually produced one, but has nonlinear constraints. It
receives information only about the available power variation.
The second model considers the generated renewable power
as state variable, and assumes availability of information on
both available power and its variation. This results in a linear
system with only linear constraints, but additional off-line data
treatment is needed. The actuation delays in power variation
are considered as follows: the generators react with a delay
denoted τ > 0, while the battery has a delay d > 0. We make
the following hypothesis:

1) each generator produces the maximum available renew-
able power or the maximum allowed one;

2) only a higher level controller can reduce the power
curtailment set-points. For this reason, the proposed
controller deals only with curtailment increase;

3) due to the considered high voltage, losses due to the
battery charge and discharge can be neglected;

4) the loads are constant.

A. Modeling with exact limitation

Let us consider that the state variables are the power flows
on the lines Fij , the generated power PPn and the available
one PAn , the curtailed power PCn and the battery power output
PBn , respectively, and the energy of the batteries EBn . The
control inputs are the power variations of PBn , PPn and PCn , i.e.
∆PBn , ∆PPn and ∆PCn , respectively, while the power variation
∆PAn of the available power is a disturbance acting on the
system that is communicated to the TSO, and ∆PTn describes
the unknown power variation disturbance due to power flow
outside the considered zone. The parameter T describes the
sampling time. The dynamic equations are

Fij(k + 1) = Fij(k) +
∑
n∈ZB bnij∆P

B
n (k − d)

+
∑
n∈ZC bnij∆P

P
n (k)

+
∑
n∈ZN bnij∆P

T
n (k), ∀ (ij) ∈ ZL

PCn (k + 1) = PCn (k) + ∆PCn (k − τ), ∀ n ∈ ZC

PBn (k + 1) = PBn (k) + ∆PBn (k − d), ∀ n ∈ ZB

EBn (k + 1) = EBn (k) + TcBn [PBn (k) + ∆PBn (k − d)],

∀ n ∈ ZB

PAn (k + 1) = PAn (k) + ∆PAn (k), ∀ n ∈ ZC
(2)

We denote P
P

n > 0, ∀ n ∈ ZC as the maximum power that
can be produced by the n renewable generator.The produced



power is defined as either the available one or the maximum
allowed by the (partial) curtailment:

PPn (k) = min
(
PAn (k), P

P

n − PCn (k)
)
∀ k, ∀ n ∈ ZC . (3)

Consequently, the produced power variation depends on the
current power produced, the curtailed power and the available
one. By defining the current power generation limit after
curtailment:

fPn (k) = P
P

n − PCn (k)−∆PCn (k − τ), (4)

one can define the effective available power for production:

gPn (k) = min
(
PAn (k) + ∆PAn (k), fP (k)

)
, (5)

and consequently obtain the update in production:

∆PPn (k) = gPn (k)− PPn (k). (6)

We distinguish two disturbances. The values of ∆PAn (k) are
communicated at each sampling k; consequently, ∆PPn (k) is
known while its evolution over the next samplings is not. On
the contrary, the values of the disturbance ∆PTn (k) are not
known.
To describe the model in a compact form, we define:

F = col[Fij ], ∀ (i, j) ∈ ZL; (7a)

PC = col[PCn ], ∆PC = col[∆PCn ], ∀ n ∈ ZC ; (7b)

PB = col[PBn ], ∀ n ∈ ZB ; (7c)

EB = col[EBn ], ∆PB = col[∆PBn ], ∀ n ∈ ZB ; (7d)

PA = col[PAn ], ∆PA = col[∆PAn ], ∀ n ∈ ZC ; (7e)

∆PT = col[∆PTn ], ∀ n ∈ ZN ; (7f)

PP = col[PPn ], ∆PP = col[P
P

n ], ∀ n ∈ ZC (7g)

To correctly model the system dynamics, we define the upper
and lower bounds of each variable as constant: Lij > 0, P

C

n >

0, ∆P
C

n > 0 P
B

n > 0, PBn < 0, E
B

n > 0, EBn > 0, ∆PPn < 0,
∆PBn < 0, ∆PAn < 0, ∆PTn < 0, ∆P

P

n > 0, ∆P
B

n > 0,
∆P

A

n > 0, ∆P
T

n > 0. Then,

L = col[Lij ],∀ (i, j) ∈ ZL; (8a)

PB = col[PBn ], P
B

= col[P
B

n ], ∀ n ∈ ZB ; (8b)

P
C

= col[P
C

n ], ∆P
C

= col[∆P
C

n ], ∀ n ∈ ZC ; (8c)

EB = col[EBn ], E
B

= col[E
B

n ], ∀ n ∈ ZB ; (8d)

∆PB = col[∆PBn ], ∆P
B

= col[∆P
B

n ], ∀ n ∈ ZB ; (8e)

∆P
A

= col[∆P
A

n ], ∆PA = col[∆PAn ], ∀ n ∈ ZC ; (8f)

∆P
T

= col[∆P
T

n ], ∆PT = col[∆PTn ], ∀ n ∈ ZC ; (8g)

P
P

= col[P
P

n ], ∀ n ∈ ZC ; (8h)

∆PP = col[∆PPn ], ∆P
P

= col[∆P
P

n ], ∀ n ∈ ZC . (8i)

Consequently, supposing the disturbances to be bounded, the
constraints are:

− L ≤ F (k) ≤ L, 0nC×1 ≤ PC(k) ≤ PP , (9a)

PB ≤ PB(k) ≤ PB , EB ≤ EB(k) ≤ EB , (9b)

0nC×1 ≤ PA(k) ≤ PP , 0nC×1 ≤ PP (k) ≤ PP , (9c)

0nC×1 ≤ ∆PC(k) ≤ ∆P
C
, ∆PB ≤ ∆PB(k) ≤ ∆P

B
,

(9d)

∆PT ≤ ∆PT (k) ≤ ∆P
T
, ∆PA ≤ ∆PA(k) ≤ ∆P

A
.
(9e)

With respect to the description of the power coming from
the renewables, the here proposed model describes the full set
of variables to be considered as state variables, and considers
only the external set of variables ∆PA as known disturbances.
However, it has several nonlinear constraints, due to the
necessity to use min conditions to define the produced power
that depends on ∆PC(k−τ). Due to the complexity to handle
such constraints in an optimal control framework, in the sequel
we target to modify the model in (2), (3) and (6) into a linear
one with linear constraints.

B. Modeling with approximate limitation

Let us focus from a different angle to the previous model.
Even if the PPn (k) is not part of the state-space model, by
exploiting (3) and (6), a nonlinear equation governing its
evolution can be devised as

PPn (k + 1) = PPn (k) + ∆PGn (k)−∆PCn (k − τ) (10)

where, we aim to express in an explicit affine form the control
action ∆PCn related to the curtailment and isolate the update
in the generation ∆PGn (k) which can eventually be treated
as an uncertainty. In particular, this term concentrating the
uncertainty, ∆PGn (k), is defined as

∆PGn (k) = min
(
fGn (k), gGn (k)

)
, (11)

with

fGn (k) = PAn (k) + ∆PAn (k)− PGn (k) + ∆P̂Cn (k − τ), (12)

gGn (k) = P
G

n − PCn (k)− PGn (k). (13)

To avoid confusion with the previous modeling in (2), we
denote in the following the generated power by PGn instead
of the notation used previously for the produced one. Through
this simple change of notation, the evolution of the production
PGn (k) follows:

PGn (k + 1) = PGn (k) + ∆PGn (k)−∆PCn (k − τ) (14)

and a linear dynamics is obtained based on the uncertain input
signal ∆PGn (k) and the delayed control ∆PCn (k − τ).

Globally, the state variables of the energy transmission are:
the power flows on the lines Fij , the generated power PGn ,
the curtailed power PCn and the battery power output PBn ,
respectively, and the energy of the batteries EBn . The control
inputs are the power variations ∆PBn and ∆PCn . Finally, the



power variation ∆PGn of the generated power PGn is a filtered
disturbance acting on the system. It is known at instant k based
on the state, control input and context information within the
zone (available power). Indeed, the available power PAn will
not be part of the state vector. We suppose it is communicated
to the TSO at each sampling time, together with the power
variation ∆PAn . Consequently, the value of ∆PGn is implicitly
defined with respect to the communicated values of PAn , ∆PAn ,
and the stored value of PGn with respect to PCn .

The disturbance ∆PTn is unknown as in model (2) as it
involves the information outside the operated zone.

With all these elements we can state the dynamical model:

Fij(k + 1) = Fij(k) +
∑
n∈ZB bnij∆P

B
n (k − d)

+
∑
n∈ZC bnij

[
∆PGn (k)−∆PCn (k − τ)

]
+
∑
n∈ZN bnij∆P

T
n (k), ∀ (ij) ∈ ZL

PCn (k + 1) = PCn (k) + ∆PCn (k − τ), ∀ n ∈ ZC

PBn (k + 1) = PBn (k) + ∆PBn (k − d), ∀ n ∈ ZB

EBn (k + 1) = EBn (k) + TcBn [PBn (k) + ∆PBn (k − d)],

∀ n ∈ ZB

PGn (k + 1) = PGn (k) + ∆PGn (k)−∆PCn (k − τ),

∀ n ∈ ZC
(15)

Philosophically, the difference in between equation (3) and
(10) with the proposed simplification is similar to the one in
between a dynamical system with nonlinearity in control and
its linearized counterpart, i.e.

x(k + 1) = x(k) + f(x(k), u(k), w(k)) (16)
= x(k) + g(x(k), u(k), w(k))︸ ︷︷ ︸

v(k)

+u(k) (17)

= x(k) + v(k) + u(k) (18)

The main advantage of the proposed modeling concerns the
possibility to pre-compute the term ∆PGn (k), based on values
of PA(k), PG(k), PC(k), ∆PA(k) and ∆PC(k − τ), while
maintaining the system linear via the offline computation of
the min and consequently reducing the computational effort
of dedicated model-based predictive control laws. The main
drawback is related to the term ∆PC(k − τ). Whenever this
is an independent variable at the pre-computation time of
sampling instant k, then the model (15) is equivalent to model
(2) as long as the first one is implicitly nonlinear.

To avoid this implicit dependence in (15), a prediction-
correction mechanism can be used, in particular for control
design. Indeed, one can purposely consider a predicted value,
e.g. ∆P̂Cn (k − τ) = 0, in (12) and dissociate it from the
actual selection of ∆PCn (k − τ), which is the control input
to be fixed at time k. The linearity of the prediction model is
preserved and its evolution can be corrected once ∆PCn (k−τ)
is chosen. This mechanism implies a model mismatch in
between the prediction and the correction phase, whenever
∆PCn (k−τ) 6= ∆P̂Cn (k−τ). However, since the curtailement
action is not supposed to take place frequently, and since

at each sampling time a new state measurement is available
(correction), the model mismatch is aimed not to impact
significantly the precision all by preserving a linear structure
of the mathematical model.

Following the notation in (16), for the prediction purpose,
the following equation is employed:

x̂(k + 1) = x(k) + v̂(k) + u(k) (19)

where the value of the disturbance v̂ is predicted (with
appropriate assumptions) in order to obtain the optimal control
input u∗(k) = u∗(x(k), v̂). Subsequently, the update equation
which accounts for the optimal control value based on the
production will be:

x(k + 1) = x(k) + v(k) + u∗(x(k), v̂) (20)
= x(k) + v(u∗(x(k), v̂)) + u∗(x(k), v̂) (21)

Then, the difference between the linearised case and the non-
linear one relies in the implementation of equation (11). When
the value ∆PCn (k−τ) is not known, then the implicit nonlinear
system is linearised by using the prediction-correction with
respect to ∆P̂Cn (k − τ).
Using the same formalism of (7a)-(7f), we define

PG = col[PGn ], ∆PG = col[∆PGn ], ∀ n ∈ ZC ; (22a)

P
G

= col[P
G

n ], ∀ n ∈ ZC ; (22b)

where P
G

n > 0 is the maximum power that can be generated
by the n renewable power plant, with n ∈ ZC . Then:

− L ≤ F (k) ≤ L, 0nC×1 ≤ PC(k) ≤ PG, (23a)

PB ≤ PB(k) ≤ PB , EB ≤ EB(k) ≤ EB , (23b)

0nC×1 ≤ PG(k) ≤ PG. (23c)

Furthermore, the following constraints apply:

PGn (k) ≤ PGn − PCn (k), ∀ n ∈ ZC . (24)

PGn (k) ≤ PAn (k), ∀ k, ∀ n ∈ ZC . (25)

Consequently, bounds for ∆PGn (k) must be coherent with
respect to the available power variation ∆PAn (k) and the
maximum allowed power P

G

n − PCn (k).
According to (7a)-(7f) and (22a), the resulting linear system

is described as

x(k + 1) =Ax(k) +BCuC(k − τ) +BBuB(k − d)

+Dww(k) +Dζζ(k) (26)

where

x(k) = [F (k) PC(k) PB(k) EB(k) PG(k)]T , (27)

uC(k) = ∆PC(k), uB(k) = ∆PB(k), (28)

w(k) = ∆PG(k), ζ(k) = ∆PT (k), (29)



A =


1nL×nL 0nL×nC 0nL×nB 0nL×nB 0nL×nC

0nC×nL 1nC×nC 0nC×nB 0nC×nB 0nC×nC

0nB×nL 0nB×nC 1nB×nB 0nB×nB 0nB×nC

0nB×nL 0nB×nC Ab 1nB×nB 0nB×nC

0nC×nL 0nC×nC 0nC×nB 0nC×nB 1nC×nC

 ,

(30)

BC =


−Mc

1nC×nC

0nB×nC

0nB×nC

−1nC×nC

 , BB =


Mb

0nC×nB

1nB×nB

Ab
0nC×nB

 , (31)

Dw =
(
Mc 0nC×nC 0nB×nC 0nB×nC 1nC×nC

)T
,

(32)
Dζ =

(
Mt 0nC×nN 0nB×nN 0nB×nN 0nC×nN

)T
,

(33)
with Ab = diag[TcBn ], ∀ n ∈ ZB , and Mc, Mb and Mt

that are composed by the elements bnij of the PTDF matrix
described in (15). The kth line in these matrices corresponds
to the PTDF of the kth line of Fij at nodes where generation
can be curtailed, at nodes where a battery is installed or at
nodes where the injections may vary, respectively.

III. SIMULATIONS

In this Section, we show a comparison among the proposed
linear modeling in (15) based on the simulation function of
MATPOWER [10], i.e. runpf. The function runpf runs a power
flow based on an AC modeling, which seems compliant with
the 5 s sampling time we consider. A first target of the present
paper is to provide a control-oriented dynamical system that
performs similarly to runpf. We remark that the proposed
model describes only a small zone (e.g. 6 busses), while
the functions runpf take into account the whole transmission
network (∼6000 busses). For sake of simplicity (and without
loss of generality as long as the simulation is performed in
open-loop) in the simulation scenario we consider τ = d = 0.

In the sequel, the simulation based on runpf is deemed
relevant for the network behaviour, and a comparison is made
with respect to a one-step ahead prediction based on the
measured value that is taken at each sampling or twenty-step
ahead prediction. Since at minimum prediction horizon of 50
seconds must be considered for control purposes, such choice
of the measure updates is consistent with the needed time to
curtail the generated power, i.e. τ = 9 since the delay is 45
seconds. Two situations are analysed:

a) a comparison between runpf, and the system in (15) with
∆P̂Cn (k − τ) = ∆PCn (k − τ);

b) a comparison between runpf, and the system in (15) with
∆P̂Cn (k − τ) = 0.

We consider the b) case in order to show the difference
between the real system and the simplified one. The considered
zone is composed by six nodes, where four of them have
renewable power generators, and one has a battery. The
considered power generators have a maximum installed power
of 78 MW, while the battery is a 10 MW one. We consider
real data for wind turbine power production.
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Figure 2 depicts the power variables with respect to the
generator in node 4720. We consider a given curtailed power
profile, such that the allowed maximum power is:
• 100% between 0 and 150 seconds;
• 30% between 150 and 900 seconds;
• 0% after 900 seconds.
The PCn (k) variable is described by the blue curve, while

the violet one depicts P
G

n −PCn (k). The yellow line represents
PAn (k), and the dotted red one is PGn (k). The power profile for
PAn (k) is taken by interpolation of real data that are measured
each 10 seconds. Figure 2 confirms that the modeling proposed
in equation (15) correctly manages to describe the different
situations it can faces. As described in Section II-B, the
simulation is carried on under the the hypothesis of a known
and estimated value of ∆PCn (k − τ). Consequently, different
results due to the cases a) and b) in Figure 3 and 4, respectively
are presented. We focus only on one branch for sake of space.

Figures 3 and 4 depict the power along the line between
nodes 4720 and 1445. Due to DC nature of the proposed
modeling, we remark that the proposed model matches the
AC one computed by runpf with a small mismatch when
PCn (k) = PCn (k + 1). As expected, the proposed model
is closer to the emulated one when the state is measured
each sampling, both in the case a) (Figure 3) and in case
b) (Figure 4). Differences in the results are expected when
∆PCn (k) 6= 0, i.e. at time 150 s and 900 s. Indeed, the
modeling error ∆PCn (k) = 0 in the simplified model generates
a prediction error, as shown at time 150 s in Figure 4. The
estimation mismatch of ∆P̂Cn (k) generates a prediction error
that is similar in both cases A and B in Figure 4 at time
150s: however, as A is updated at each sample, its evolution
is corrected to the real value at time 155 s, while it happens
at time 200 s for B. On the contrary, no mismatch due to the
wrong value of ∆P̂Cn (k) take place at time 900 s. This is due
to the fact that the value of equation (11) is defined by gGn in
(13), and consequently there is no modeling error. We remark
then that the adopted simplification generates errors in a subset
of the possible cases, and depends on the combination of the
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Fig. 3. Case a): The power flow on the branch between buses 4720 and 1445.
A) Runpf. B) System updated each sampling. C) System updated every 20
samplings.
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Fig. 4. Case b): The power flow on the branch between buses 2745 and 10000.
A) Runpf. B) System updated each sampling. C) System updated every 20
samplings.

current values of PAn (k) and PCn (k). The proposed model can
then be used to describe the AC transmission power network.
As expected, higher errors correspond to slowest updates, both
when considering the nonlinear model or the simplified linear
one. However, the difference between the predicted dynamics
and the real one is reasonably close almost everywhere, and the
possibility to measure the real state contributes on reducing the
model mismatch. Then, the capability of the proposed model
to describe the real system is verified, and it can be used for
model based control approaches.

IV. CONCLUSIONS

A control-oriented dynamical system is proposed to model
the power variation taking place in a subtransmission area.
The necessity to model the possibility to partially curtail the
renewable power requests the consideration of a richer model
with respect to the ones usually investigated. The proposed
solution uses PTDF and results to be a linear model with
linear constraints. A comparison with the close to reality
simulation tool MATPOWER is provided, and the linear model
describing only a zone is shown to produce satisfactory
results with respect to the ones obtained by the whole real
system emulation. Future work will consider dedicated control

methods to optimally address the target to manage the power
flow in the considered zone.
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