
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Palmed: Throughput Characterization for Any
Architecture
Anonymous Author(s)

Abstract
This paper describes Palmed, a tool that automatically builds
a resource mapping, a performance model for pipelined,
super-scalar, out-of-order CPU architectures. Resource map-
pings describe the execution of a program by assigning in-
structions in the program to abstract resources. They can
be used to predict the throughput of basic blocks or as a
machine model for the backend of an optimizing compiler.
Palmed does not require hardware performance coun-

ters, and relies solely on runtime measurements to construct
resource mappings. This allows it to model not only execu-
tion port usage, but also other limiting resources, such as
the frontend or the reorder buffer. Also, thanks to a dual
representation of resource mappings, our algorithm for con-
structing mappings scales to large instruction sets, like that
of x86.
We evaluate the algorithmic contribution of the paper in

two ways. First by showing that our approach can reverse
engineering an accurate resource mapping from an idealistic
performance model produced by an existing port-mapping.
We also evaluate the pertinence of our dual representation, as
opposed to the standard port-mapping, for throughput mod-
eling by extracting a representative set of basic-blocks from
the compiled binaries of the Spec CPU 2017 benchmarks [4]
and comparing the throughput predicted by existingmachine
models to that produced by Palmed.

Keywords: abstract simulation, sensitivity analysis, perfor-
mance feedback, performance bottleneck, QEMU

1 Introduction
Performance modeling is a critical component for program
optimizations, assisting compilers as well as developers in
predicting the performance of code variations ahead of time.
Performance models can be obtained through different ap-
proaches that span from precise and complex simulation
of a hardware description [18, 19, 32] to application level
analytical formulations [13, 31]. An interesting approach for

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PLDI’21, June 20 - 25, 2021, Virtual Conference
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

modeling the CPU of modern pipelined, super-scalar, out-
of-order processors trades simulation time with accuracy by
separately characterizing both latency and throughput of in-
structions. This approach is suitable both for optimizing com-
pilers [16, 23], but also for hand-tuning critical kernels writ-
ten in assembler [11, 33]. It is used by performance-analysis
tools such as CQA [25], Intel IACA [14], OSACA [17], MI-
AMI [20] or llvm-mca [28]. Cycle-approximate simulators
such as ZSim [27] or MCsimA+ [3] can also take advantage
of such an instruction characterization.
This motivated several projects to extract information

from available documentation [5, 17]. But the documentation
or commercial CPUs, when available, is often vague or out-
right missing information. Intel’s processor manual [7], for
example, does not describe all the instructions implemented
by Intel cores, and for the instructions that are covered, it
does not even provide the decomposition of individual in-
structions into micro operations (µOPs), nor the execution
ports that these µOPs can use. Another line of work that
allows more exhaustive and precise instruction characteriza-
tion is based on micro-benchmarks such as those developed
to characterize the memory hierarchy [6]. While character-
izing the latency of instructions is quite easy [10, 12, 15],
characterizing the throughput is more challenging. Indeed,
on super-scalar processors, the throughput of a combination
of instructions cannot be simply derived from the throughput
of the individual instructions. This is because instructions
compete for CPU resources, such as functional units, or ex-
ecution ports, which can prevent them from executing in
parallel. It is thus necessary to not only characterize the
throughput of each individual instruction, but also to come
up with a description of available resources and the way they
are shared. The most natural way to express this sharing is
through a port mapping, a tripartite graph that describes how
instructions decompose to µOPs and assigns µOPs to execu-
tion ports (see Fig 2a). The goal of existing work has been to
reverse-engineer such a port mapping for different CPU ar-
chitectures. The first level of this mapping, from instructions
to µOPs, is conjunctive, i.e., a given instruction decomposes
into one or more of each of the µOPs it maps to. The second
level of this mapping on the other hand is disjunctive, i.e.,
a µOP can choose to execute on any one of the ports maps
to. Even with hardware counters that provide the number
of µOPs executed per cycle and the usage of each individual
port, creating such a mapping is quite challenging and re-
quires a lot of manual effort with ad hoc solutions to handle
all the cases specific to each architecture [2, 10, 12, 25].

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Such approaches, while quite powerful, allowing a semi-
automatic characterization of basic-block throughput, suffer
from several limitations: First of all, they assumes that the
architecture provides the required hardware counters; Sec-
ond, they only allow modeling the throughput bottlenecks
associated with port usage, and neglect other resources, such
as the front-end or reorder buffer. In other words, it provides
a performance model of an ideal architecture that does not
necessarily fully match reality. To overcome these limitations
we limit ourselves to only using cycle measurements when
building our performance model. Not relying on special-
ized hardware performance counters may make the initial
model construction more complicated, but in exchange our
approach is able to model resource not covered by hardware
counters with relative ease. This also makes it significantly
easier to port our modeling technique to new CPU architec-
tures.
One of the main challenges in this approach is to gen-

erate a set of micro-benchmarks that allows capturing all
the possible resource sharing. Unfortunately, to be exhaus-
tive, and in the absence of structural properties, this set is
combinatorial. A simple way to reducing the set of required
micro-benchmarks chosen by existing approaches [21, 24] is
to reduce the set of modeled instructions to those that are
emitted by compilers. Another natural strategy followed by
Ithemal [21] is to build micro-benchmarks from the “most
executed” basic-blocks of some representative benchmarks.
A third strategy, used by PMEvo [24], is to have kernels
that contain repetitions of two different instructions. Our
solution is constructive and follows several steps that allows
building a non-combinatorial number of micro-benchmarks
that stresses the usage of each individual resource thus al-
lowing to characterize the resource usage of all instructions.
The second main challenge addressed by PMEvo is to build
an interpretable model, that is, a resource-mapping that can
be used by a compiler or a performance debugging tool, not
a black-box that just predicts the throughput of a micro-
kernel. The issue with the standard port-mapping, as used
in [2, 17, 28], is that computing the throughput of a set of
instructions requires the resolution of a flow problem. That
is, given a set of micro-benchmarks, finding a mapping that
best expresses the corresponding observed performances
requires solving a multi-resolution linear optimization prob-
lem. This linear problem also does not scale to larger sets of
benchmarks, even when restricting the micro-benchmarks
to only contain up to two different instructions. PMEvo ad-
dressed this issue by using a evolutionary algorithm that
approximates the result. Our approach, on the other hand,
is based on a crucial observation that a dual representation
exists for which computing the throughput is not a linear
problem but a simple formula instead. While it takes several
hours to solve the original disjunctive-port-mapping for-
mulation, only a few minutes suffice for the corresponding
conjunctive-resource-mapping formulation.

The first contribution of this paper is to provide a less in-
tricate two-level view, that can be constructed quicker than
previous works. Instead of representing the execution flow
as the traditional three-level “instructions decomposed as
micro-operations (micro-ops) executed by ports” model, we
opt for a direct “instruction use abstract resources” model.
Whereas an instruction is transformed into several micro-ops
which in turn may be executed by different compute units;
our bipartite model strictly uses every resources mapped to
the instructions. In other words, the or in the mapping graph
are replaced with and, which greatly simplifies throughput
estimation. This representation may easily represents other
bottlenecks such as the instruction decoder or the re-order
buffer as other abstract resources. Note that this corresponds
to the user view, where the micro-ops and their executions
path are kept hidden inside the processor. The second contri-
bution is to provide a constructive algorithm that provides a
non-combinatorial set of representative micro-benchmarks
that can be used to characterize all instructions of the archi-
tecture.
This paper has the following structure. In section 2, we

present how our mapping differs from those in previous
works. Section 3 gathers the formal definitions and proves the
equivalence between our model and the three-level mapping
currently in use. In section 4, we propose an architecture-
agnostic approach in order to deduce the abstract mapping
without the use of any performance counters but the one
counting CPU cycles. Finally, section 5 evaluates the quality
of our approach in the following two ways. First, by ex-
perimentally constructing a model following our bipartite
structure from an existing three level one. Second, by esti-
mating the execution time of micro-kernels extracted from
well-know compute benchmarks.

2 Background
In this work, we consider a CPU as a complex device mainly
described by the so-called “port model”: Here, instructions
are first fetched from memory, then decomposed into one
or more micro-operations, also called µOPs. The CPU then
schedules these µOPs on an available execution port, that
performs the real operation. Even if some instructions such
as add %rax, %rax translate into only a single µOP, the x86
instruction set also contains more complex instructions that
translate into multiple µOPs. For example, the wbinvd (Write
Back and Invalidate Cache) instruction produces as many
µOPs as needed to flush every line of the cache. In practice,
due to the large caches used in modern CPUs, it produces
thousands of µOPs [2].
Even though execution ports play a major role in CPU

performance, they are not the only source of performance
bottlenecks. Indeed, throughout their execution, the µOPs
travel through numerous stages, all of them being able to
produce performance anomalies. After the decode stage, the

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

µOPs are placed in µOP queue, which can also be fed by the
µOP cache. Next, the µOPs are sent to the reorder buffer,
which marks the conceptual end of the CPU front-end and
beginning of the backend. The scheduler then selects instruc-
tions and assigns them to an execution port with the required
compute capabilities. When several instructions are assigned
to the same port, the later ones are gathered in a reservation
station and wait for their operands to be computed. Note
that the operands may not correspond to actual registers or
exact memory locations, as several layers of caching and reg-
ister renaming may occur. When the execution port finally
becomes available, the µOP may start its execution. This
operation is called issuing an instruction, and is out-of-order,
that is, the µOPs may be executed in a different order than
the program order. For example, if a µOP is waiting for a
piece of data to arrive from the RAM, the entire pipeline
does not stall, and other independent instructions can be
executing to hide the memory latency.

Execution ports are hardware controllers which have differ-
ent functional capabilities, as they are wired to one or more
execution units: for example, on the Skylake architecture (see
Fig. 1), only port 4 may store data; and the store address must
have previously been computed by an Address Generation
Unit, available on ports 2, 3 and 7. Once executed, the in-
structions wait back in the reorder buffer until all preceding
instructions have finished, they then write their results back
to the register file and are finally discarded. On x96, except
for the divider, all units are fully pipelined, meaning that
they can execute one µOP per cycle. Nevertheless, this does
not imply that the results of an operation are available in
one cycle, as µOPs may require multiple cycles to complete.

The latency of an instruction is the number of clock cycles
necessary between two dependent computations. For an
instruction I , its latency can be experimentally measured by
creating a micro-benchmark that executes a long chain of
instances of I where each instance depends on the result of
the preceding one. For example, assuming a 2-address mode
and registers named %Ri:

repeat many times:
I %R0, %R0
I %R0, %R0
I %R0, %R0
...

The throughput of an instruction is the maximum number
of instances of that instructions that can be executed in
parallel per cycle. For an instruction I , the throughput of I can
be experimentally measured by creating a micro-benchmark
that executes many non-dependent instances of I :

repeat many times:
I %R0, %R0
I %R1, %R1
I %R2, %R2
...

Figure 1. Intel’s Skylake microarchitecture, compiled from
marketing presentations and the official documentation

The combined throughput of a multiset1 of instructions
can be defined similarly. For example, the throughput of
{I 21 , I2}, i.e. two instances of I1 and one instance of I2, is
equal to the number of instructions executed per cycle (IPC)
by the micro-benchmark:

repeat many times:
I1 %R0, %R0
I1 %R1, %R1
I2 %R2, %R2
...

Note that Palmed only uses benchmarks that have no
dependencies, that is, where all instructions can execute
in parallel. Consequently the order of instructions in the
benchmark does not matter 2

A resource-mapping describes the resources used by each
instructions in a way that can be used to derive the through-
put for any multiset of instructions, without having to ex-
ecute the corresponding micro-benchmark. As mentioned
earlier, the standard way of representing a resource mapping
is with a tripartite port-mapping as illustrated in Fig 2a. In
this example: instruction I1 decomposes into a single µOP

1A multiset is a set that can contain multiple instances of an element. Like
with normal sets, the order of elements is not relevant
2We assume, like all related work we are aware of, that the CPU scheduler
is able to optimally schedule these simple kernels.

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

v1 that itself has a single port r1 on which it can be issued;
as for instruction I2, it also decomposes into a single µOP v2
that can be issued to either one of two ports, r1 or r2. Hence,
I1 has a throughput of one, meaning only one instruction
can be issued per cycle. I2, on the other hand has a through-
put of two, meaning the two ports can be used in parallel
by two different instances of I2. The throughput of the set
{I 21 , I2}, more compactly denoted by I 21 I2, is determined by
resource r1 which is already saturated by I1 alone; While
I2 could be both assigned to r1 or to r2, it will go to r2. It
will thus take two cycles to execute three instructions, two
instances of I1 and one instance of I2. Hence, a throughput
of 3/2 = 1.5 instruction per cycle. Note that even if we un-
roll the benchmark to increase the number of instructions
that could potentially execute in parallel, the IPC does not
improve, since it is limited by the bottleneck in r1.
The dual representation, advocated in this paper, corre-

sponds to the conjunctive bipartite resource mapping as
illustrated in Fig. 2b. Here, instruction I1 uses two resources
r1, with a of throughput one, and r12, with a throughput of
two. To re-iterate, I1 does not choose one the two resources
to execute on, but use them both simultaneously. Instruction
I2 only uses the single resource r12. The conjunctive form
makes it straightforward to compute the set of resources
used by the multiset I 21 I2. r1, with a throughput of one, is
used twice by I1, which requires two cycles. While r12, with
a throughput of two, is used twice by I1 and once by I2, re-
quiring 3/2 = 1.5 cycles. The bottleneck resource is thus r1.
Overall, we execute three instructions in two cycles, leading
to an IPC of 3/2 = 1.5, which is the same result produced by
the tripartite model.

The following section provides the formalism that allows
proving the equivalence between the bipartite and tripartite
representations.

3 The bipartite resource mapping
The goal of this section is to prove the equivalence between
the standard tripartite graph representation of a port map-
ping and the bipartite conjunctive mapping between µOPs
and abstract resources promoted by this paper. This section
focuses on the lower layer, from µOPs to ports/resources. To
simplify the notation, this part assumes that each instruction
is composed of a single µOP.

3.1 Primary definitions
Definition 3.1 (Microkernel). A microkernel K is an infi-
nite loop made up of a finite multiset of instructions, K =
I
σK ,1
1 I

σK ,2
2 · · · I

σK ,m
m without dependencies between instructions.

The number of instructions executed during one loop iteration
is |K | =

∑
i σK ,i .

Definition 3.2 (Disjunctive port mapping). A disjunctive
port mapping is a bipartite graph (V ,R, E) where:V represents
the set of µOPs; R represents the set of resources (corresponding

to execution ports in a real-world CPU); E ⊂ V × R expresses
the possible mappings from µOPs to ports. In this original form
each port r ∈ R has a throughput ρ(r) of 1.
Let K = I

σK ,1
1 I

σK ,2
2 · · · I

σK ,m
m be a microkernel where each

instruction is composed of a single µOP vi .
A valid assignment represents the choice of which resources

to associate with a given instance of an instruction. However,
this choice might change between iterations. Thus, we represent
the valid assignment as a mapping p : I × R 7→ [0; 1] where
pi ,r corresponds to the frequency a given resource is chosen.
We also define Ri = {r , pi ,r , 0}. This assignment is valid if:

∀Ii ∈ K,∀r ∈ Ri , (vi , r) ∈ E

∀Ii ∈ K,
∑
r ∈Ri

pi ,r = 1

The execution time of an assignment (pi ,r)i ,r , is:

tend = max
r ∈R

∑
i ∈K

σK ,i · pi ,r

The minimal execution time over all valid assignments is
denoted t(K) (obtained using an optimal assignment).

Definition 3.3 (Conjunctive port mapping). A conjunctive
port mapping is a bipartite weighted graph (I ,R, E, ρI ,R)
where: I represents the set of instructions; R represents the
set of abstract resources; E ⊂ I × R expresses the required use
of abstract resources for each instruction;
Each abstract resource r ∈ R has a throughput of 1; An

instruction i that uses a resource r ((i, r) ∈ E) always uses the
same proportion (number of cycles, possibly lower/greater than
1) ρi ,r ∈ Q+; If i does not use r , then ρi ,r = 0.

Let K = I
σK ,I1
1 I

σK ,I2
2 · · · I

σK ,Im
m be a microkernel. In a steady

state execution of K , for each loop iteration, instruction i must
use resource r (σK ,iρi ,r) cycles. The number of cycles required
to execute one loop iteration is:

t(K) = max
r ∈R

(∑
i ∈K

σK ,iρi ,r

)
The throughput of K is:

K =
|K |

t(K)
=

∑
i ∈K σK ,i

maxr ∈R
(∑

i ∈K σK ,iρi ,r
)

Definition 3.4 (∇-dual conjunctive port mapping). Let (V ,
R, E) be a disjunctive port mapping. Let ∇ be a non-empty
set of subsets of R. We define its ∇-dual, a conjunctive port
mapping, as (V ,R, E) such that:

R =
{
r J , J ∈ ∇

}
E =

{
(v, r J) s.t. {r , (v, r) ∈ E} ⊆ J

}
ρ(r J) =

∑
r j ∈J ρ(r j) = |J |

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

v1 v2 v3

r1 r2

I1 I2

OR

I3

(a)

v1

r1

v2 v3

r12 r2

AND AND

(b)

Figure 2. Example of resource mapping with three µOPs and
two ports: (2a) the bottom part of this graph is a bipartite
disjunctive and (2b) its bipartite conjunctive ∇-dual for ∇ =
{{r1}, {r2}, {r1, r2}}.

Then, we can normalize this graph by adding weights to
edges, and normalizing the resource throughput:

ρNi ,r J
=

{
1/ρ(r J) if (i, r J) ∈ E
0 else

ρN (r J) = 1

Example. Let p be a processor with two execution ports
r1 and r2 and three instructions I1, I2 and I3, each composed
to one µOPv1,v2 andv3, respectively. As illustrated in figure
(2a)v1 can be executed in one cycle on r1,v2 can be executed
either on r1 or r2,v3 can be executed on r2. The corresponding
conjunctive mapping has a combined resource r12 that is
linked to the usage of either r1 or r2 by edges of weight 1/2.
In this representation, every instruction using r1 or r2 also
uses r12 for half the throughput, which leads to the graph
illustrated in figure (2b).

3.2 Equivalence between disjunctive and
conjunctive

Definition 3.5 (Saturated port set). Consider a microkernel
K . Let (pi ,r)i ,r be a valid assignment of K for a disjunctive
port mapping (V ,R, E). The saturated port set S is defined as
follow:

S =

{
rs such that tend =

∑
i ∈K

σK ,i · pi ,r

}
Lemma 3.1 (Saturated set assumption). Let (pi ,r)i ,r be an
valid assignment for a microkernel K in a disjunctive port
mapping (V ,R, E) and S its saturated set. If we have two
resources rs and rt such that (v, rs) ∈ E ∧ (v, rt) ∈ E and
rs ∈ S, ri < S.

Then, there exists a faster valid assignment for which both
resources rs and rt are saturated.

Corollary 3.1 (Saturating assignment). Let us consider an
optimal assignment (pi ,r)i ,r of a list of µOPsK on a disjunctive
port mapping (V ,R, E). For all v ∈ V such that there are
(rx , ry) ∈ R2 connected to v (i.e. (v, rx) ∈ E and (v, ry) ∈ E).
If rx ∈ S, then ry ∈ S. Thus:

∀i, [Ri ⊂ S ⇔ {r , (vi , r) ∈ E} ⊂ S]

Theorem 3.1 (Equivalence of ∇-duality). Let K be a micro-
kernel. Let (V ,R, E) (with the set of resources R also denoted
{r j }j), ∇ a set of subsets of R, and (V ,R, E) (with the set of
resources R also denoted {r J }J ∈∇) be its ∇-dual.

(i) Let (pi ,r)i ,r be a valid optimal assignment (i.e. of minimal
execution time) of K with regard to (V ,R, E). This assignment
can be translated into its ∇-dual, with no change to its execu-
tion time. In other words, t(K) ≤ t(K).

(ii) If ∇ is the set of all subsets of R then t(K) = t(K).

We have an equality if ∇ is the set of all subsets of R. In
theory, the size of this set is exponential in the number of
resources. However, the proof shows that we can restrict
ourselves to unions of saturated sets S of optimal assign-
ments.
In practice, we build ∇ by first considering the abstract

resources that directly correspond to the set of resources
that a given µOP can be mapped to in the disjunctive map-
ping. Then, we recursively apply the following rule: if two
abstract resources have a non-empty intersection, we then
add their union as a new abstract resource. The intuition is
that this new abstract resource introduces a new constraint
on the valid assignment in the dual, corresponding to a po-
tential saturation of these resources. We end up with a set
containing less than 14 elements in our experiments.

4 Deducing the resource mapping from
any CPU

Using a conjunctive resource mapping based throughput
model instead of a disjunctive one has several advantages:
1. First, computing a throughput for a multiset of instruc-
tions from a disjunctive port-mapping requires the solving
of a flow problem (usually expressed as an ILP [24] while a
simple formula (IPC of the bottleneck resource which com-
putation time is a simple sum) suffices for the conjunctive
resource-mapping. 2. In a standard port mapping, using a
tripartite conjunctive-disjunctive graph, the middle “hidden
layer” has to be discovered, which greatly complicates the
task of discovering the whole graph. the use of a dual con-
junctive representation for the µOPs to resource mapping
leads to a conjunctive-conjunctive tripartite graph that can
be trivially collapsed into a conjunctive bipartite one. Dis-
covering the bipartite conjunctive instruction to resource
mapping of a CPU is clearly easier allowing the design of a
constructive architecture-agnostic algorithm, which we will
describe in this section.

Our approach can be decomposed into four different steps.
5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

• Select the basic instructions, a subset of instructions
that map to as few resources as possible;

• Compute the core mapping for these basic instructions.
The core mapping stays fixed for the rest of the al-
gorithm. Along with the core mapping we select a
saturating microbenchmark for each resource, called
the saturating kernel. The saturating kernel is made up
of basic instructions that do not place a heavy load on
other resources.

• Use the saturating kernels and the core mapping to
deduce, one by one, the mapping for every remaining
instruction of the targeted architecture.

The objective of the following algorithm is to create an
appropriate set of microkernels; For each microkernel K ,
measure its throughput K ; For a fixed finite set of abstract
resources, use operational research to deduce values for ρi ,r
that best express the observed throughput for all the con-
structed microkernels; By setting the objective function of
our linear program to minimize

∑
i ,r ρi ,r , the obtained bi-

partite graph is compact (minimal number of edges and re-
sources) allowing fast (yet precise) and interpretable perfor-
mance modeling.

4.1 Basic Instructions selection
The first step of our algorithm consists of trimming the in-
struction set to extract aminimal set of instructions for which
the entire exact mapping will be computed. As this mapping
will be used later, we want to be sure to have enough instruc-
tions to account for all resources, but the more instructions
we have, the longer the resolution of the linear problem to
find the core mapping will take. We thus first apply two
simple filters that reduce the number of candidates for basic
instructions.

• Low-IPC: if a < 1 then a is ignored. The first filter
simply ignores instructions with an IPC strictly less
than 1: Assuming every physical resource to have a
throughput of 1, such instructions use one unit more
than once.

• Equivalent classes: if ∀p, aapp = bbpp then keep only
a or b. The second filter removes duplicates, that is,
if two instructions behave the same with regard to
the evaluation used for our basic instruction selec-
tion, then one of them can be ignored. Obviously, on
a real machine, despite all the crucial efforts to re-
move execution hazards, measured IPC never perfectly
match and the correct criteria for selecting a represen-
tative instruction for duplicates should approximate
the equality test ∀p, aapp ≈ bbpp . The construction of
equivalence classes and associated representative in-
struction in this context simply uses a k-mean method

on matrix Q =
(
aabb

)
a,b

.

ANDNPS
(XMM, XMM)

1*p015

PADDQ
(MM, MM)

1*p05

LEA_B
(R32)
1*p15

ADDSS
(XMM, XMM)

(1*p01)

BSR
(R16, R16)

(1*p1)

UNPCKHPS
(XMM, XMM)

(1*p5)

 DIVPS
(XMM, XMM)

(1*p0)

ROUNDPD
(XMM, XMM)

(2*p01)

DPPD
(2*p01+
1*p5)

Figure 3. Disjoint graph between a few x86 instructions.
Very basic instructions are defined as a maximal clique of
disjoint instructions (in blue).

ANDNPS
(XMM, XMM)

1*p015

PADDQ
(MM, MM)

1*p05

LEA_B
(R32)
1*p15

ADDSS
(XMM, XMM)

(1*p01)

UNPCKHPS
(XMM, XMM)

(1*p5)

 DIVPS
(XMM, XMM)

(1*p0)

ROUNDPD
(XMM, XMM)

(2*p01)

BSR
(R16, R16)

(1*p1)

DPPD
(2*p01+
1*p5)

Figure 4. Frugality relation for a few x86 instructions. Basic
instructions are defined as the n most frugal instructions.
ANDNPS, PADQ, LEA_B, and ADDSS are the four more frugal
instructions.

Once instructions with a low IPC and duplicates have been
removed from the set of candidates, the selection uses two
criteria:

• Very basic instructions: Instructions a and b are con-
sidered disjoint (a ↔ b) if aabb = a + b. The set of
very basic instructions is defined as a maximal clique
of disjoint instructions.
The idea here is to capture instructions that produce
only one µOP executed by one single physical port.
Indeed, they do not share any resource so their IPC
are additive when put together in a microbenchmark
and they have the highest IPC compared to instruc-
tions producing twice the same µOP; thus forming the
maximum clique of our graph.

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

A example for a subset of Skylakes’ instructions, in-
cluding the ports they use and their the dependency
graph is shown in Figure 3. Here, 1 ∗ p0 expresses that
instruction DIVPS decomposes into a single µOP that
can only use port p0; 2 ∗ p01 expresses that ROUNDPD
decomposes into two µOPs that both can use either
ports p0 or port p1 (thus the use of the abstract com-
bined port p01). The maximum clique, colored in blue,
is composed exclusively of instructions each made up
of a single µOP that map to a single port.

• Most frugal instructions: Instruction a is considered
more frugal than b (a ≼ b) if ∀p,aapp ≥ bbpp . This
relation defines a pre-order: The n most frugal instruc-
tions are selected (the bigger is n the more complete
is the core mapping but also the more complex is the
linear program).
The idea here is to collect the instructions that use the
lowest number of resources. Figure 4 shows the frugal-
ity relation for a few Skylake-X instructions. Setting
n ≥ 4 is necessary to gather the combined ports p015,
p01, p15 and p05, which correspond to the resources
with the highest throughput.

These three steps are described in Algo. 1.

1 Function Select_basic_insts(I,n)
2 IF = I;

// Remove low-IPC and duplicates

3 foreach a ∈ IF do
4 if a ≤ 1 − ϵ then IF := IF − {a} ;

5 if ∃b ∈ IF , ∀p ∈ I, aapp = bbpp then
6 IF := IF − {a}

// Select very basic instructions

7 foreach a ∈ IF do
8 Dj[a] :=

{
b ∈ IF ,a

abb = a + b
}

9 let a <VB b ⇔

10 (|Dj[a]| > |Dj[b]|) ∨
(
|Dj[a]| = |Dj[b]| ∧ a > b

)
;

11 IVB := ∅;
12 for a ∈ IF in <VB order do
13 if IVB ⊂ Dj[a] then IVB := IVB ∪ {a} ;
14 if |IV B | = n then return IB := IV B ;

// Select most frugal instructions

15 IMF := ∅;

16 let a ≼Frugal b ⇔ ∀p,aapp ≥ bbpp ;
17 for a ∈ IF in ≼Frugal order do
18 IMF := IMF ∪ {a};
19 if |IV B ∪ IMF | = n then return

IB := IVB ∪ IMF;
20 return IB := IVB ∪ IMF;
Algorithm 1: Finding the set of basic instructions IB

4.2 Core mapping
The first step before setting the core mapping is to character-
ize resource usage and sharing of basic instructions. This is
done by finding a mapping that reflects the mesured IPC of
a set of microbenchmarks K exclusively composed of those
basic instructions (see the next paragraph): Such mapping is
obtained using linear programming as described in Alg. 2,
that we call the Bipartite Weight Problem (BWP).

Hazardous instructions. Our overall infrastructure re-
lies on our ability to measure the throughput of any multi-set
of instructions without being polluted by other execution
bottlenecks such as alignment issues for the decoding that
cannot be modelled by the resource mapping formalism. In
theory, assuming an ideal machine that matches the port-
mapping performance model, for any two instructions a and
b, then three resources should be enough to model any com-
bination {(i, j) ∈ N, aib j }. But experiments shows that this
is not the case in practice, and that one needs to accept a mod-
elling error on the IPC of aib j for any i and j. An important
experimental observation is that some of the instructions
show more hazards than others. A first pre-processing that
considers all simple instruction pairs (a,b) evaluates the min-
imal error ϵ(a,b) required to map those two instructions to
no more than three resources. From pairwise error, a multi-
set error is then defined as follow:

ϵ(K) = max
a∈K

(
min
s ∈IB

ϵ(a, s),max
b ∈K

ϵ(a,b)

)
BipartiteWeight Problem (BWP). The notations are those

defined in Def. 3.3: ρi ,r ∈ Q+ expresses the usage propor-
tion of the resource r by instruction i; For a microkernel
K , each cycle an average of K instructions are executed.
The proportion of resource r that is used each cycle is thus
ρK ,r = K ×

(∑
i ∈I σK ,iρi ,r

)
/
(∑

i ∈I σK ,i
)
which is bounded

by its throughput (ρK ,r ≤ ρr = 1) . One of the resources is
saturated, that is, ∃r , ρK ,r = 1. These constraints form our
linear problem. As we want the mapping to be as compact
as possible, the objective function is set to be the minim-
imzation of

∑
i ∈I,r ∈R ρi ,r . Observe that mechanically this

objective function will lead to use as less resources as possi-
ble (only resources which have at least one none-zero edge
are kept) without the need to use 0-1 nor integer variables.

Completeness of the core mapping (LP1). The core map-
ping needs to be as complete as possible, that is, it should
not miss any edge from a basic instruction to a resource. The
set of microbenchmarks, which needs to be as “representa-
tive” as possible, is built by iterative enrichment: For a given
set, a mapping is found using the BWP; This mapping is
used to construct a new microbenchmark for each abstract
resource; The process consists of a first iteration that runs
until no new microbenchmark is added. The seed is made
up of microbenchmarks composed of single instructions or
combinations of pairs of basic instructions constructed as

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

1 Function Mapping(K)
2 Solve Bipartite Weight Problem
3 I := instructions(K);
4 ∀(i, r) ∈ I × R, 0 ≤ ρi ,r ;
5 ∀(K, r) ∈ K × R,

6 ρK ,r =
(∑

i ∈I σK ,iρi ,r
)
× K/

(∑
i ∈I σK ,i

)
;

7 ∀(K, r) ∈ K × R, ρK ,r ≤ 1;
8 ∀K ∈ K, maxr ∈R ρK ,r ≥ 1 − λϵ(K);
9 Minimize

∑
i ∈I,r ∈R ρi ,r ;

10 R := {r such that ∃a, ρa,r ≥ ϵ};
11 G := (I,R, E) with E = {(i, r , ρi ,r)};
12 return G;
Algorithm 2: Formulation of the Bipartite Weight Prob-
lem (BWP) under linear programming. G is the bipartite
weighted (conjunctive) graph of the resource usage of
each instruction.

follows: 1. a ∈ I alone; 2. aabb , as this benchmark has the
following property: If a and b are independent, that is the set
of resources used by a and b are disjoint, or have a cumulated
usage that does not exceed 1

a+b
, then aabb = a + b; 3. aMb

(withM big – 20 in practice) to avoid the convergence of the
solver to a simpler solution with fewer resources an lower
edges representing only the special conflicting case aabb .

The enrichment is done as follow: for each resource found,
we add a benchmark composed of every instruction using it,
therefore creating others constraints relative to interdepen-
dence of instructions. Once convergence has been reached,
we expect all existing resources to be discovered, and want
to make sure that if an edge from an instruction i to a re-
source r exists it will be represented in our mapping. For
this purpose we extract, for each resource r , a saturating
kernel sat[r] that we combine with instruction i to build a
new microbenchmark.

Ksat(i, r) = i
1(sat[r])N

where N is chosen bigger than 4 × sat[r]/i 3.

Saturating kernels (LP2). The saturating kernel sat[r] is
chosen among all saturating microbenchmarks (K s.t. ρK ,r =

1 – at least one necessarily exists by construction) as the one
that has minimum consumption

cons(K) =
∑

i ∈I, r ∈R

ρi ,r

The algorithm for finding the core mapping is described in
Algo. 3.

4.3 Finding the complete mapping (LPAUX)
The last step, corresponding to Algo. 4 consists in solving an
optimisation problem for each remaining instruction. The

3Proof of completness is omited by lack of space

1 Function Core_mappinд(IB)

2 K :=
⋃

(a,b)∈I2
B , a,b

{
a, aabb , aMb

}
;

3 do
4 G := Mapping(K);
5 Knew :=

⋃
r ∈R

{
Πi ∈IB , ρi ,b ≥ϵ i

i
}
− K ;

6 K := K ∪Knew;
7 until Knew = ∅;
8 foreach r ∈ R do
9 sat[r] := K ∈ K s.t. ρK ,r =

1 that minimizes cons(K);
10 for i ∈ IB s.t. i < sat[r] do
11 K := K ∪ {Ksat(i, r)};
12 G := Mapping(K);
13 return K, sat,G;
Algorithm 3: Find core mapping and associated saturat-
ing kernels (LP1 and LP2)

formulation of the new optimisation problem is very similar
to the BWP, except that the resources and the edges of the
core mapping computed previously are frozen. The presence
or absence of an edge from the to-be-mapped instruction i
to a resource r is constrained by using Ksat(i, r) (defined in
the previous section) in the set of microbenchmarks.

1 λ := 1;
2 IB := select_basic_insts(I,n);
3 K, sat,G := Core_mapping(IB);
4 foreach inst ∈ I do
5 K :=

⋃
r ∈R Ksat(inst, r);

6 I := IB ∪ {inst};
7 Solve Find a solution to the following problem
8 Minimize

∑
r ∈R ρinst,R ;

9 ∀r ∈ R, 0 ≤ ρinst,r ;
10 ∀(K, r) ∈ K × R, ρk ,r =(∑

i ∈I σK ,iρi ,r
)
× k/

(∑
i ∈I σK ,i

)
;

11 ∀(K, r) ∈ K × R, ρK ,r ≤ 1;
12 ∀K ∈ K, maxr ∈R ρK ,r ≥ 1 − λϵ(K);
13 if No solution is found then
14 Launch the solver again with λ := λ + 1
Algorithm 4: Find a resource mapping that models the
instruction throughput (LPAUX)

5 Evaluation
Our evaluation is two-fold: first, we prove experimentally the
accuracy of our mapping algorithm by obtaining the dual rep-
resentation of a state-of-the art disjunctive mapping given
by uops.info from Abel et al [2]. Secondly, we compare our
mapping computed from real-world experiments against as-
sembly microkernels extracted from two benchmarks suites:
Polybench, and the SPEC2017 benchmark suite.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Figure 5. High-level view of the algorithms of Palmed

5.1 Retrieving a state-of-the art mapping
We want to check that we can correctly infer the minimal
disjunctive mapping corresponding to the dual representa-
tion of uops.info’s conjunctive mapping. Our goal is to show
that our algorithm is able to find a correct mapping, given
(i) an execution model matching the dual representation of
uops.info’s mapping, (ii) ideal microbenchmarking results,
i.e. our benchmarks are simulated without any constraint
on the total number of instructions per microbenchmarks
and without rounding error. Given the idealized nature of
the simulations, the error rate given to the ILP solver was
extremely tight: we set the maximum relative error between
a microbenchmark simulation (by the abstract model) and
the benchmark IPC (computed from an ideal representation)
to 10−7.
We then apply our resource mapping algorithm, and try

to find the correspondence between our abstract resources
and the combined ports on every Intel microarchitecture up
to Cannon Lake. The results are shown in Table 1.

Silent resources. On a few architectures, some ports can-
not be detected by our algorithm, as they are hidden under
another resource. More generally, a silent port is a port ps for
which every instruction that uses this port also uses another
fixed port pm , which masks it.
Given this matter of fact, pm will always be saturating

beforeps , so hidden ports are never bottlenecks of the execution.
It follows that their representation is not necessary to any
performance model, so we do not classify their absence as
errors of the mapping.

Table 1. Number of detected classes for an ideal CPU simu-
lated from uops.info’s mapping

Architecture Nb. of Silent Nb. of
codename eq. classes ports found res.
Conroe 161 p3 / p4 8
Wolfdale 157 p3 / p4 8
Nehalem 147 p3 / p4 8
Westmere 156 p3 / p4 8

Sandy Bridge 186 None 9
Ivy Bridge 184 None 9
Haswell 218 p7 12
Broadwell 222 p7 12
Skylake 217 p7 14
Skylake-X 288 p7 14
Kaby Lake 205 p7 14
Coffee Lake 210 p7 14
Cannon Lake 242 p7 14

Our algorithm successfully outputs a mapping correspond-
ing exactly to the mapping of uops.info on all tested archi-
tectures, except for the silent port. Up to the Westmere ar-
chitecture, port 3 is dedicated to the generation of memory
address for stores only, whereas port 4 handles the load itself.
Generally, an instruction needs first to compute its address
before storing anything in memory, so port 3 is hidden by
port 4, but that is not always the case. Starting from Haswell,
the store address generation unit was moved to port 7, and
our algorithm does not output any issue related to this silent
port either.

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

5.2 Comparison on real-world microkernels
Whereas the previous section aims at experimentally check-
ing the expressiveness of our mapping, this section will
demonstrate its practical use in real-world conditions. For
this, we compare Palmed with the native execution and with
the predictions from two existing tools: first, the port map-
ping deduced from uops.info’s work and IACA [14].

5.2.1 Calibration of the model. The port mapping is
computed using the algorithm presented in section 4 using a
list of x86 instructions extracted from Intel’s XED [8]. We dis-
card instructions which cannot be instrumented in practice,
such as instruction modifying the control flow, privileged
instructions, along with instructions whose IPC is lower than
0.05, as they do not present any interest for performance
predictions of throughput-limited microkernels.

Because of variations in the real-world measurements, we
fix the error rate to 0.05 for the microbenchmark coefficient,
which means that the number of repetitions of an instruction
inside its microkernel differs by at most 5% from what the
algorithm requires. For example, a benchmark aabb with
a = 0.06 and b = 1 will be rounded to a1b20. Note that in the
BWP defined in Algorithm 2, we use the rounded coefficients
and not the ideal ones. The IPC is also rounded accordingly.

Table 2. Experimental environments and main features of
the mappings obtained

Machine SKL-SP ZEN1
Processor 2x Intel Xeon AMD EPYC

Silver 4114 7401P
Cores 20 24

Benchmarking time 8h 6h
LP solving time 2h 2h
Overall time 10h30 8h30

Gen. microbenchmarks ∼ 4,000,000 ∼ 4,000,000
Resources found 12 5

uops’ inst. supported 3313 1104
Instructions mapped 2598 2592

5.2.2 Throughput estimations. To evaluate Palmed, the
same microkernel is run:

1. Natively, on our machine, with the IPC measured with
CPU_CLK_UNHALTED and INSTRUCTION_RETIRED.

2. Using IACA, by inserting assembly markers around
the kernel and running the tool.

3. Using Abel’s work [2], by running the conjunctive
mapping with exact compatibility found in Section 5.1
and approximating the execution time by the abstract
resource with the highest usage.

4. Using ourmappingwith abstract resources correspond-
ing to the actual machine, as described in Section 5.2.1.

The microkernels are extracted from two well-known bench-
mark suite: SPECInt2017 [4] and Polybench [22]. For Poly-
bench, we used QEMU to gather the translation blocs exe-
cuted at runtime along with their number of executions. For
SPEC, we used static binary analysis tools to extract the basic
blocks along with performance counters statistics in order to
recover the performance-critical section of the code, as the
cost of running an emulator was too high to reproduce Poly-
bench’s setup. Overall these two benchmark suites generates
thousands of basic blocks, and for each we use the various
methods above to display the predicted performance of a mi-
crokernel made of the same instruction mix that is occurring
in that basic block. This evaluation approach allows to gen-
erate a high variety of realistic instruction mixes (e.g., com-
bining SIMD and address calculations for numerical kernels
like in Polybench). Figure 6 display the results for each ba-
sic block/microkernel, comparing the predicted throughput
with the native, measured throughput. A heatmap indicates
the number of microkernels with a particular predicted IPC
versus native IPC. Appendix ?? displays a similar figure, but
each microkernel is weighted by the number of times it is ex-
ecuted in the original program, to highlight how frequently
occurring basic blocks are modeled.

We evaluate two architectures: the SKL-SP is an Intel Xeon
Silver 4114 CPU at 2.20GHz, using Debian, Linux kernel 4.19
and PAPI 6.0.0.1 to collect the execution time in cycle and the
number of instructions for each microbenchmarks, restrain-
ing to non-AVX-512 instructions. The ZEN is an AMD EPYC
7401P CPU at 2GHz, setup similarly. This information along
with execution times of the tool and other experimental re-
sults are gathered in Table 2. We compare the number of
instructions supported by Palmed with the ones supported
by uops.info as a baseline, but, as uops supports only par-
tially AMD’s architecture, less than half the instructions
supported by our tool are present. On the contrary, uops
separates every encoding of the same instructions, therefore
leading to a more complete set of supported instructions
on SKL-SP. Experimentally, we detect less resources on the
real machine than on the simulated one, even though more
bottlenecks are present. This matter of fact is explained by
the error rate which allows our algorithm to merge some
resources together when their are often used together. More-
over, some resources absent from the ideal mapping such as
the decoding bandwidthmay hide port-related resources that
are never bottlenecks on real-world benchamrks. On AMD’s
machine, the reduced number of resources may be explained
by the structure of the processor using a separated floating-
point accelerator, which leads to unexpected latencies in the
microbenchmarks. In Fig. 6 we observe that Palmed (left)
compares very well with IACA (center), showing very sim-
ilar error distributions. In particular for Polybench, which
emphasizes floating point computations and SIMD instruc-
tions, the predicted versus actually measured throughput is
mostly distributed along the diagonal, i.e., the error is very

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

SK
L-
SP

/S
PE

C
20

17
SK

L-
SP

/P
ol
yb

en
ch

ZE
N
1
/S

PE
C
20

17

ZE
N
1
/P

ol
yb

en
ch

Figure 6. Accuracy of Palmed versus uops.info, IACA and native execution on SPEC CPU2017 and PolyBench/C 4.2

small. Note both can over-estimate or under-estimate the
throughput, while uops (left) systematically over-estimates
the throughput, and overall has a significantly higher error
than IACA and Palmed. Indeed, uops’ predictions are only
based on port mapping, which ignore other sources of bot-
tlenecks such as the maximum number of instructions that
the processors is able to decode per cycle. In fact, Skylake-SP
have 8 different hardware ports, so amapping based solely on
them may indicate an IPC up to 8, whereas real-world micro-
benchmarks hardly reach an IPC of 4 and never exceed this
threshold, hence the need for an automatedmicrobenchmark-
driven mapping tool.

6 Related work
6.1 Port mapping detection
Intel has developed a static analyzer named IACA [14] which
uses its internal mapping base on proprietary information.
However, the project is closed-source and has been depre-
cated since April 2019. Even though some latencies are given

directly in the documentation [7], they are known to contain
errors and approximations, in addition to being incomplete.
First attempts to measure the latency and throughput of

x86 instructionswhere led byAgner Fog [10] andGranlund [12]
using hand-written microbenchmarks. Each benchmark mea-
sures the cycles required to repeatedly execute a single type
of instruction as described in section 2. Fog also uses hard-
ware performance counters and hand crafted benchmarks
to reverse-engineers port mappings for Intel, AMD and VIA
CPUs. Fog’s mappings are considered by the community to
be quite accurate. For example, the machine model of the
x86 backend of the the LLVM compiler framework [16] is
partially based on them [29].
However, Fog’s and Granlund’s approach using hand-

written benchmark and manual analysis is tedious and error-
prone, since modern CPU instruction sets have thousands
of different instructions with complicated interactions. Abel
and Reineke [1, 2] have tackled this problem by combining
an automatic microbenchmark generator with an algorithm
for port-mapping construction. Their techniques requires
hardware counters that count the number of µOPs executed

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

on each execution port, which are only available on recent
Intel CPUs. They recently also started providing data on the
newest generations of AMD CPUs, but since those do not
have the required hardware counters Abel and Reineke only
publish instruction latencies and throughputs.
OSACA [17], is an open source alternative to IACA that

offers a similar static throughput and latency estimator. It re-
lies on automated benchmarks manually linked with publicly
available documentation to infer the port mapping and the
latencies of the instructions. The tool Kerncraft [13] focuses
on hot loop bodies from HPC applications while also model-
ing caches; its mapping comes from automated benchmarks
generated through Likwid [30] and hardware counters mea-
surements. A similar path is taken by CQA [26], a static loop
analyser integrated into the MAQAO framework [9] which
also supports OpenMP routines. It combines dependency
analysis, microbenchmarks, and a port mapping and previ-
ous manual results to offer various types of optimization
advice to the user, such as vectorisation, or how to avoid
port saturation. Both Kerncraft and CQA use a hardcoded
port mapping based on the work of Fog and the official Intel
and AMD documentation.

Besides the classic port mappings machine learning based
approaches have also been used to approximate the through-
put of basic blocks with good accuracy. Ithermal [21] uses
a deep neural network based on LSTM as a ”black box“ to
predict the execution time of basic blocks, trading under-
standing of the model for accuracy. The downside of this
approach is that the resulting model is completely opaque
and can not be analysed or used for any other purpose than
to predict the throughput of a given basic block.

PMEvo [24] is a tool that, like Palmed, automatically gen-
erates a set of benchmarks that it uses to build a portmapping.
Like other previous approaches, and unlike Palmed, it pro-
duces a tripartite model with instructions, µOPs, and ports.
It does not require hardware performance counter, and only
relies on runtime measurements of its benchmarks. The set
of benchmarks used is determined semi-randomly using a
genetic algorithm. The benchmarks themselves are simpler
than those used by Palmed and contain at most two different
types of instructions. The main difference between PMEvo
and Palmed is that internally PMEvo uses a disjunctive bipar-
tite resource model, instead of the conjunctive model used
by Palmed. These models, while able to accurately predict
the execution of pipelined instructions bottlenecked only on
the execution ports, can not represent other bottlenecks like
the reorder buffer, or the non-pipelined instructions like divi-
sion. More importantly, PMEvo’s approach to handle a large
set of instructions for the mapping (i.e., all available) may
lead to quickly explode the number of microbenchmarks as
they are selected by evolutionaty algorithms, while our ap-
proach is focused to generate specifically microbenchmarks
that saturate resources. Palmed can complete the full map-
ping, benchmarking included, in a few hours. Another key

to this scalability is our incremental approach to handle com-
plex instructions using a linear programming formulation
to compute automatically, and optimally, the mapping.

7 Conclusion
Performance modeling for pipelined, super-scalar, out-of-
order CPU architectures is notoriously difficult, in part due
to the absence of accurate resource mapping information.
Indeed, a starting point of CPU performance modeling is de-
termining which instruction can be executed on which port,
and at which throughput. Instructions may be executed by
several resources accessible via different ports. Prior work
to establish the port mapping of instructions range from
browsing the usually incomplete vendor documentation to
generating microbenchmarks semi-automatically to stress
the CPU and measure via a variety of hardware counters the
performance obtained, leading to determining the through-
put of selected instructions.
In this work, we presented Palmed which automatically

builds a resource mappingfor CPU instructions, without re-
quiring specific hardware counters besides measuring in-
structions executed and cycles elapsed. This allows to model
not only execution port usage, but also other limiting re-
sources, such as the frontend or the reorder buffer. We pre-
sented an end-to-end approach to enable the mapping of
thousands of instructions in a few hours, includingmicrobench-
marking time. Our key contributions include the mathemati-
cally rigorous formulation of the port mapping problem as
solving iteratively linear programs, enabling an incremental
and scalable approach to handling thousands of instructions.
We provided amethod to automatically generatemicrobench-
marks saturating specific resources, alleviating the need for
statistical sampling. We evaluated our approach and con-
firmed its ability to produce a port mapping with perfect
accuracy for a wide range of ntel architectures in an ideal-
ized setup, and demonstrated on one Intel and one AMD
high-performance CPUs our system generates automatically
practical port mappings that compare favorably with sys-
tems like IACA or uops.info when evaluated on microkernels
built from basic blocks in SPECInt 2017 and PolyBench/C.

References
[1] Andreas Abel and Jan Reineke. 2019. nanoBench: A Low-Overhead

Tool for Running Microbenchmarks on x86 Systems. arXiv e-prints
abs/1911.03282 (2019). arXiv:1911.03282 http://arxiv.org/abs/1911.

03282

[2] Andreas Abel and Jan Reineke. 2019. uops.info: Characterizing La-
tency, Throughput, and Port Usage of Instructions on Intel Microar-
chitectures. In Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS 2019, Iris Bahar, Maurice Herlihy, Emmett
Witchel, and Alvin R. Lebeck (Eds.). ACM, New York, NY, USA, 673–
686. https://doi.org/10.1145/3297858.3304062

[3] Jung Ho Ahn, Sheng Li, Seongil O, and Norman P. Jouppi. 2013. Mc-
SimA+: A manycore simulator with application-level+ simulation and

12

https://arxiv.org/abs/1911.03282
http://arxiv.org/abs/1911.03282
http://arxiv.org/abs/1911.03282
https://doi.org/10.1145/3297858.3304062

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

Palmed: Throughput Characterization for Any Architecture PLDI’21, June 20 - 25, 2021, Virtual Conference

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

detailed microarchitecture modeling. In 2012 IEEE International Sympo-
sium on Performance Analysis of Systems and Software. IEEE Computer
Society, Austin, TX, USA, 74–85. https://doi.org/10.1109/ISPASS.2013.

6557148

[4] James Bucek, Klaus-Dieter Lange, and Jóakim von Kistowski. 2018.
SPEC CPU2017: Next-Generation Compute Benchmark. In Compan-
ion of the 2018 ACM/SPEC International Conference on Performance
Engineering, ICPE 2018, Katinka Wolter, William J. Knottenbelt, An-
dré van Hoorn, and Manoj Nambiar (Eds.). ACM, 41–42. https:

//doi.org/10.1145/3185768.3185771

[5] Chatelet Chatelet, Clement Courbet, Ondrej Sykora, and Nico-
las Paglieri. [n.d.]. Google EXEgesis. https://llvm.org/docs/

CommandGuide/llvm-exegesis.html

[6] C. L. Coleman and J. W. Davidson. 2001. Automatic memory hierarchy
characterization. In 2001 IEEE International Symposium on Performance
Analysis of Systems and Software. ISPASS. 103–110.

[7] Intel Corporation. [n.d.]. Intel 64 and IA-32 Architectures Optimization
Reference Manual. https://www.intel.com/content/dam/doc/manual/

64-ia-32-architectures-optimization-manual.pdf

[8] Intel Corporation. [n.d.]. Intel X86 Encoder Decoder (Intel XED).
https://github.com/intelxed/xed

[9] Lamia Djoudi, Jose Noudohouenou, and William Jalby. 2008. The
Design and Architecture of MAQAOAdvisor: A Live Tuning Guide. In
Proceedings of the 15th International Conference on High Performance
Computing (HiPC 2008), P. Sadayappan, Manish Parashar, Ramamurthy
Badrinath, and Viktor K. Prasanna (Eds.), Vol. 5374. Springer-Verlag,
Berlin, Heidelberg, 42–56. https://doi.org/10.1007/978-3-540-89894-

8_8

[10] Agner Fog. 2020. Instruction tables: Lists of instruction latencies,
through-puts and micro-operation breakdowns for Intel, AMD and
VIA CPUs. http://www.agner.org/optimize/instruction_tables.pdf

[11] Franz Franchetti, Tze Meng Low, Doru-Thom Popovici,
Richard Michael Veras, Daniele G. Spampinato, Jeremy R. Johnson,
Markus Püschel, James C. Hoe, and José M. F. Moura. 2018. SPIRAL:
Extreme Performance Portability. Proc. IEEE 106, 11 (2018), 1935–1968.
https://doi.org/10.1109/JPROC.2018.2873289

[12] Torbjörn Granlund. 2017. Instruction latencies and throughput for
AMD and Intel x86 Processors. https://gmplib.org/~tege/x86-timing.

pdf

[13] Julian Hammer, Jan Eitzinger, Georg Hager, and Gerhard Wellein. 2017.
Kerncraft: A Tool for Analytic Performance Modeling of Loop Kernels.
In Tools for High Performance Computing 2016, Vol. abs/1702.04653.
Springer International Publishing, Cham, 1–22.

[14] Israel Hirsh and Gideon S. [n.d.]. Intel® Architecture Code Ana-
lyzer. https://software.intel.com/en-us/articles/intel-architecture-

code-analyzer

[15] instlatx64. [n.d.]. x86, x64 Instruction Latency, Memory Latency and
CPUID dumps. http://instlatx64.atw.hu/

[16] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation
Framework for Lifelong Program Analysis & Transformation. In 2nd
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO 2004). IEEE Computer Society, San Jose, CA, USA, 75–88.
https://doi.org/10.1109/CGO.2004.1281665

[17] Jan Laukemann, Julian Hammert, Johannes Hofmann, Georg Hager,
and GerhardWellein. 2018. Automated Instruction Stream Throughput
Prediction for Intel and AMD Microarchitectures. In 2018 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High Perfor-
mance Computer Systems (PMBS). IEEE Computer Society, ACM, Dallas,
TX, USA, 121–131. https://doi.org/10.1109/PMBS.2018.8641578

[18] Gabriel H. Loh, Samantika Subramaniam, and Yuejian Xie. 2009. Zesto:
A cycle-level simulator for highly detailed microarchitecture explo-
ration. In IEEE International Symposium on Performance Analysis of Sys-
tems and Software, ISPASS 2009. IEEE Computer Society, Boston, Mas-
sachusetts, USA, 53–64. https://doi.org/10.1109/ISPASS.2009.4919638

[19] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad
Alian, Rico Amslinger, Matteo Andreozzi, Adrià Armejach, Nils As-
mussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R.
Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón, Lizhong Chen,
Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan
Fariborz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord,
Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanindhito, An-
dreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Han-
hwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Sub-
ash Kannoth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Kr-
ishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli, Tiago
Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Niko-
leris, Lena E. Olson, Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram
Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Se-
toain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur,
Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas,
Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood,
Hongil Yoon, and Éder F. Zulian. 2020. The gem5 Simulator: Version
20.0+. arXiv:2007.03152 https://arxiv.org/abs/2007.03152

[20] Gabriel Marin, Jack J. Dongarra, and Daniel Terpstra. 2014. MIAMI: A
framework for application performance diagnosis. In 2014 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software,
ISPASS 2014. IEEE Computer Society, Monterey, CA, USA, 158–168.
https://doi.org/10.1109/ISPASS.2014.6844480

[21] Charith Mendis, Alex Renda, Saman P. Amarasinghe, and Michael
Carbin. 2019. Ithemal: Accurate, Portable and Fast Basic Block
Throughput Estimation using Deep Neural Networks. In Proceedings
of the 36th International Conference on Machine Learning, ICML 2019
(Proceedings of Machine Learning Research), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.), Vol. 97. PMLR, Long Beach, California,
USA, 4505–4515. http://proceedings.mlr.press/v97/mendis19a.html

[22] Louis-Noël Pouchet and Tomofumi Yuki. 2016. PolyBench/C: The
polyhedral benchmark suite, version 4.2. http://polybench.sf.net.

[23] GNU C Project. 1987. GNU Compiler Collection (GCC). https:

//gcc.gnu.org/

[24] Fabian Ritter and Sebastian Hack. 2020. PMEvo: portable inference
of port mappings for out-of-order processors by evolutionary opti-
mization. In Proceedings of the 41st ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, PLDI
2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, New York,
USA, 608–622. https://doi.org/10.1145/3385412.3385995

[25] Andres Charif Rubial, Emmanuel Oseret, Jose Noudohouenou, William
Jalby, and Ghislain Lartigue. 2014. CQA: A code quality analyzer tool
at binary level. In 21st International Conference on High Performance
Computing, HiPC 2014. IEEE Computer Society, Goa, India, 1–10. https:
//doi.org/10.1109/HiPC.2014.7116904

[26] Andres Charif Rubial, Emmanuel Oseret, Jose Noudohouenou, William
Jalby, and Ghislain Lartigue. 2014. CQA: A code quality analyzer tool
at binary level. In 21st International Conference on High Performance
Computing, HiPC 2014. IEEE Computer Society, Goa, India, 1–10. https:
//doi.org/10.1109/HiPC.2014.7116904

[27] Daniel Sánchez and Christos Kozyrakis. 2013. ZSim: fast and accu-
rate microarchitectural simulation of thousand-core systems. In 40th
Annual International Symposium on Computer Architecture, (ISCA’13),
Avi Mendelson (Ed.). ACM, New York, NY, USA, 475–486. https:

//doi.org/10.1145/2485922.2485963

[28] Sony Corporation and LLVM Project. [n.d.]. LLVM Machine Code
Analyzer. https://llvm.org/docs/CommandGuide/llvm-mca.html

[29] Craig Topper. 2018. Update to the LLVM scheduling model
for Intel Sandy Bridge, Haswell, Broadwell, and Skylake
processors. https://github.com/llvm/llvm-project/commit/

cdfcf8ecda8065fda495d73ed16277668b3b56dc

13

https://doi.org/10.1109/ISPASS.2013.6557148
https://doi.org/10.1109/ISPASS.2013.6557148
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://llvm.org/docs/CommandGuide/llvm-exegesis.html
https://llvm.org/docs/CommandGuide/llvm-exegesis.html
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://github.com/intelxed/xed
https://doi.org/10.1007/978-3-540-89894-8_8
https://doi.org/10.1007/978-3-540-89894-8_8
http://www.agner.org/optimize/instruction_tables.pdf
https://doi.org/10.1109/JPROC.2018.2873289
https://gmplib.org/~tege/x86-timing.pdf
https://gmplib.org/~tege/x86-timing.pdf
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
http://instlatx64.atw.hu/
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/PMBS.2018.8641578
https://doi.org/10.1109/ISPASS.2009.4919638
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1109/ISPASS.2014.6844480
http://proceedings.mlr.press/v97/mendis19a.html
http://polybench.sf.net
https://gcc.gnu.org/
https://gcc.gnu.org/
https://doi.org/10.1145/3385412.3385995
https://doi.org/10.1109/HiPC.2014.7116904
https://doi.org/10.1109/HiPC.2014.7116904
https://doi.org/10.1109/HiPC.2014.7116904
https://doi.org/10.1109/HiPC.2014.7116904
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1145/2485922.2485963
https://llvm.org/docs/CommandGuide/llvm-mca.html
https://github.com/llvm/llvm-project/commit/cdfcf8ecda8065fda495d73ed16277668b3b56dc
https://github.com/llvm/llvm-project/commit/cdfcf8ecda8065fda495d73ed16277668b3b56dc

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

PLDI’21, June 20 - 25, 2021, Virtual Conference Anon.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

[30] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A
Lightweight Performance-Oriented Tool Suite for x86 Multicore En-
vironments. In 39th International Conference on Parallel Processing
(ICPP) Workshops 2010, Wang-Chien Lee and Xin Yuan (Eds.). IEEE
Computer Society, San Diego, California, USA, 207–216. https:

//doi.org/10.1109/ICPPW.2010.38

[31] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: An Insightful Visual Performance Model for Multicore
Architectures. Commun. ACM 52, 4 (April 2009), 65–76. https:

//doi.org/10.1145/1498765.1498785

[32] Matt T. Yourst. 2007. PTLsim: A Cycle Accurate Full System x86-64
Microarchitectural Simulator. In 2007 IEEE International Symposium on
Performance Analysis of Systems and Software. IEEE Computer Society,
San Jose, California, USA, 23–34. https://doi.org/10.1109/ISPASS.2007.

363733

[33] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework
for Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Soft-
ware 41, 3, Article 14 (June 2015), 33 pages. https://doi.org/10.1145/

2764454

14

https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1109/ISPASS.2007.363733
https://doi.org/10.1109/ISPASS.2007.363733
https://doi.org/10.1145/2764454
https://doi.org/10.1145/2764454

	Abstract
	1 Introduction
	2 Background
	3 The bipartite resource mapping
	3.1 Primary definitions
	3.2 Equivalence between disjunctive and conjunctive

	4 Deducing the resource mapping from any CPU
	4.1 Basic Instructions selection
	4.2 Core mapping
	4.3 Finding the complete mapping (LPAUX)

	5 Evaluation
	5.1 Retrieving a state-of-the art mapping
	5.2 Comparison on real-world microkernels

	6 Related work
	6.1 Port mapping detection

	7 Conclusion
	References

