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Abstract—Given the recent advances in the design of efficient
Deep Neural Networks (DNN) for tiny edge devices, the feature
extraction frontend has become a computation bottleneck for
enabling audio processing on low-end MicroController Units
(MCUs). To address this challenge, this work presents novel
hardware-aware integer quantization schemes for the Mel-
Frequency Cepstral Coefficients (MFCC) feature extractor. Our
high-precision integer-only 32 bit approximated flow does not
lead to accuracy degradation with respect to a full-precision
implementation when feeding multiple DNN models for Au-
dio Keyword Spotting applications. In contrast, a second low-
precision 16-bit approximated MFCC algorithm presents a 0.6%
lower accuracy but results 3× faster. Additionally, by leveraging
on an 8-cores MCU, GAP8, our solution results 9.8× faster than
the full precision MFCC deployed on an FPU-suited MCU. When
integrated within an optimized end-to-end system for Keyword
Spotting, a GAP8-based audio smart device presents an overall
power consumption as low as 3.4mW, demonstrating up to 35
days of lifetime with a single AA battery.

Index Terms—MelSpectrogram, MFCC, Keyword Spotting,
MicroControllers, Multi-Core, TinyML

I. INTRODUCTION

TinyML is becoming pervasive and rapidly impacting the
ecosystem of next-generation audio devices, such as hearables
and voice assistants. These devices feature on-board process-
ing capabilities to analyze the audio signal, e.g. human speech,
as captured by microphone sensors. Because of their battery-
powered real-time operation, the data processing engines are
affected by severe latency and energy constraints, which
demand optimized hardware-aware data analytics algorithms.

In the context of Keyword Spotting (KWS) systems, i.e.
devices that recognize a given keyword(s) in a speech utter-
ance, solutions based on Deep Neural Networks (DNNs) have
shown the highest accuracy [1]. The KWS DNN models are
commonly fed with a frequency-domain representation of the
audio signal, e.g. Log-Mel filter bank energies (LFBE) or Mel-
frequency cepstral coefficients (MFCC), which result to be the
most effective transformations for this task.

In the view of smart audio devices, KWS algorithms have
been recently demonstrated on low-power MicroControllers
(MCUs) [1], which are typically preferred to hardwired
integrated circuits because of the flexibility given by SW
programmability. Unfortunately, current implementations of
feature extraction modules, such as MFCC, leverage floating-
point software libraries, which results in a computational

bottleneck for the majority of low-end MCUs lacking of
floating-point arithmetic units.

To address this issue, we present a hardware-aware ap-
proximated MFCC feature extractor and we provide a first
optimized fixed-point software implementation for MCUs1.
The proposed module, when combined with a KWS DNN
model trained on MFCC full-precision features, preserves
the accuracy of the classifier without the need of retraining.
Moreover, we optimize our MFCC library to run on a multi-
core RISC-V MCU, GAP8, by leveraging on the DSP-oriented
instruction set and the parallel computation paradigm.

The contributions of this work are:
• We propose two optimized Mel Spectrogram integer-

only approximation techniques: a high-precision (HP32)
ultra-accurate and a faster low-precision (LP16) but less
accurate version.

• We present an optimized software MFCC library for
GAP8, which leverages on 8 core parallelism and SIMD
low-precision instructions.

Thanks to the proposed techniques, we show an end-to-
end KWS application running in real-time on a multi-core
MCU class device (GAP8) and achieving an accuracy of 94%
on the Google Speech Commands dataset without relying on
floating-point computation. In particular, the MFCC feature
extractor takes as low as 6.8ms to process an audio frame
(40 msec at 16kHz) and results 9.8× faster, in terms of clock
cycles, than a full-precision solution implemented on an FPU
equipped MCU, such as an STM32L4. Also, by leveraging
DVFS techniques, the proposed system achieves a power
consumption of 2.4mW that leads to a battery lifetime of
several weeks (1.2V & 2400mAh AA battery for 35 days),
when considering a 1mW power cost of a microphone sensor.

II. RELATED WORK

Recent battery-operated smart audio devices integrate Audio
Keyword Spotting as the processing pipeline frontend to re-
duce the energy consumption [2], [3]. In the latest years, DNN-
based solutions have demonstrated to be highly accurate to
solve this task. The work [1] introduced low-complexity (less
than 80MOps) KWS solutions for tiny devices achieving up

1The Software Library is Open-Source at https://github.com/GreenWaves-
Technologies/gap sdk/tree/master/tools/autotiler v3/Generators/MFCC



Fig. 1. Block diagram of the Integerized MFCC pipeline featur-
ing high-precision (HP32) or low-precision (LP16) arithmetic. The
datatype of intermediate results is reported in the bottom.

to 95% accuracy on the Google Speech Command dataset [4].
The proposed approaches included multiple kinds of DNNs,
which were fed with the MFCC features extracted from the
audio signal.

To efficiently bring Audio processing, including KWS, on
deep edge devices, several works presented dedicated circuits
for low-power applications [5]–[7]. To extract energy features
over multiple frequency channels audio, [5] presented a mixed-
signal implementation of the MFCC based on analog bandpass
filters, which has been employed in [8] for keyword spotting
applications. On the contrary, among the fully digital solutions,
the work [6] presented an integrated KWS system featuring,
as audio preprocessing, a circuit consisting of a serial FFT-
based MFCC. To recover the accuracy of the KWS algorithm
with respect to the Tensorflow baseline, the authors trained the
DNN models on the approximated MFCC features but limiting
the detection capabilities to a set of only two words. Vocell [7]
also embeds integrated feature extraction, KWS and Speaker
Verification on the same die. Despite the effectiveness and
the low-energy consumption of the proposed algorithm ap-
proximations, these solutions lack flexibility which is instead
featured by our work.

On the other side, DSP solutions for audio processing gain
high flexibility thanks to software programmability. Recently,
the work [1] firstly presented a DNN-based KWS solution for
microcontrollers. The implementation relies on an optimized
software backend CMISIS-NN [9] while the MFCC leverages
an optimized floating-point implementation. Our work goes
beyond this seminal paper by introducing an algorithm ap-
proximation of the MFCC extractor to leverage fixed-point
arithmetic and by exploiting multi-core acceleration and DVFS
techniques to improve energy efficiency.

III. FEATURE EXTRACTION FOR AUDIO DNN PROCESSING

In this section, we focus on MFCC, which is a widely
adopted approach for many DNN-based audio applications.
In the following, we firstly describe the MFCC pipeline and
then we present our approximated solutions for MCU targets
featuring low-precision integer-only arithmetic.

A. Background on MFCC

Figure 1 illustrates the MFCC components and the dataflow
that applies on an audio frame x of N data points to produce
M frequency features. After a windowing filter, e.g. Hanning,
the signal feeds an FFT block to compute the Discrete Time

Fourier Transform (DFT). The filtered signal InFFT is zero-
padded to reach a power-of-two size (NF). Then, the spec-
trogram of the FFT is extracted by computing the module
of the complex values. Alternative MFCC implementations
return the squared module of complex values (Periodogram),
avoiding the highly expensive square root function required in
the complex module computation. The dot product between the
Periodogram pow and a set of M triangular filter banks, i.e.
the Mel filters, provides the Mel energies values. This block
aims at mimicking the non-linear human sound perception, by
discriminating differently the low and high audio frequencies.
For this reason, the components of Mel filters banks result
highly sparse, i.e. the majority of the filters coefficients is
zero. Lastly, the logarithmic values of the Mel Filter output
(LogMel) feed a DCT block to produce the M MFCC features.

B. Integerized MFCC

Since Audio DNN models are typically trained on full-
precision feature vectors, current available software imple-
mentations of the MFCC feature extractor for MCUs relies
on floating-point arithmetic [1]. On the contrary, we target
a hardware-aware approximation of the MFCC algorithm
that (i) relies on integer-only arithmetic for devices lacking
FPU engines, (ii) reduces the memory footprint of coefficient
parameters and (iii) does not lead to accuracy degradation for
Audio DNN inference on the target device.

Starting from the full-precision MFCC baseline described
in Section III-A, we firstly target a high-precision integer-only
flow, denoted as HP32, which closely approximate the baseline
algorithm. In this solution, which is depicted in Fig. 1, the
output of the windowing function is an array of Cmplx int32
fixed-point values. Additionally, we use an int8 vector Q of
N elements to store the exponent of the values, i.e. a per-
element scaling factor 2−Q[i], i = 1, ..N . Hence, we make use
of 40 bits to represent every element but keeping the integer
and exponent values into two separate arrays, i.e. not paying
latency overhead for misaligned memory accesses. The core
computation of the Radix-2 FFT, which consists of 2 additions
and 2 multiplication, matches the scaling factors of the fixed-
point operands by means of shift operations before the sum.
The FFT products are computed by multiplying and shifting
the fixed point values and the int16 twiddles (fixed-point Q15).
To compute the Mel energies, we multiply the int32 data, i.e.
the Periodogram with the non-zero elements of the sparse
Mel filter banks (dot-product operation). We only store the
first and the last indexes of the non-zero elements in the
triangular shaped filters to reduce the memory cost. Also, to
prevent overflow while computing the dot product, we evaluate
at runtime the dynamic range of the operands by checking
the position of the leading 1 in the bit representation of the
input maximum value. For each Mel filter, we right shift the
input elements if pos lead one(max(input)) + 15 + 2 > 32
(we empirically add +2 to take into account the sum over
multiple products). Then, we store the applied element-wise
shift factors in a buffer, which is used later during the log



computation. To compute the logarithm of a fixed-point data,
we rely on the intrinsic properties of the logarithm operator:

log(x[i]) = log(X[i] ·2−Q[i]) = log(X[i])−Q[i] · log(2) (1)

where log(2) is stored as a fixed-point constant, while
log(X[i]) is computed with a 3rd order Taylor series approx-
imation with integer-only operations. The fixed-point int16
elements produced by logarithm operator share the same
scaling factor Q. Lastly, the DCT operation consists of a dot
product between the log output and the int16 DCT coefficients
matrix (Q15 format). We empirically found that a Q11 format
for the log and Q4 for the DCT outputs lead to a good trade-off
between dynamic and precision of the real value numbers.

To improve the performance, i.e. reduce the latency, of
the proposed approximated algorithm, we further reduce the
bitwidth of the FFT and Periodogram input/output buffers to
int16. On one hand, a lower bitwidth reduces the memory
footprint of the data buffers and, on the other hand, enables
the usage of 2x16 bit SIMD instructions. We refer to this low-
precision flow as LP16 MFCC.

IV. AUDIO PROCESSING ON A MULTI-CORE MCU

In this section we describe an optimized implementation
of the HP32 and the LP16 MFCC approximated algorithms
on an energy-efficient multi-core MCU and the integration
into an end-to-end Keyword Spotting (KWS) pipeline. The
targeted processing platform is GAP8 [10], an ultra-low power
System-on-Chip (SoC) that includes a cluster of 8 general-
purpose RISC-V cores coupled with a 64kB scratchpad data
memory tailored to accelerate compute-intensive tasks, e.g.
DNN inference. Besides a large set of peripherals, the SoC
features a single RISC-V core, i.e. the Fabric Controller (FC),
and a 512kB on-chip L2 memory. The FC controls the software
execution and can optionally offload tasks to the multi-core
cluster. The FC and the Cluster subsystem feature separate
Voltage-Frequency domains. Hence, DVFS can be individually
applied and controlled by software. To efficiently support DSP
operations (e.g. DNN inference), the Instruction Set of the 9
(8+1) embedded RISC-V cores features low-bitwidth SIMD
vector instructions, including 4x8-bit and 2x16-bit MAC.

We rely on a data-parallelism paradigm to accelerate our
Integerized MFCC pipeline of Fig. 1 on GAP8. The FFT
features s = log2(NF ) computation stages, each one with
N/2 butterflies, i.e. the low-level computation units. Within
our multi-core implementation, the computation of the even
and odd-numbered DFT outputs is distributed among all the
cores. To optimize the reuse of the twiddle factors during
the computation of the N/2 butterflies, we implement two
nested loops: an outer loop i = 0, .., NF /2

s+1 and an inner
loop j = 0, .., 2s. To improve the multicore speedup, the
first log2(NF ) − 3 stages are parallelized on the outermost
loop while the last 3 stages on the innermost loop. For
the Mel energy computation, each core computes the dot
product between the input Periodogram and b M

Ncores
c Mel

Filters. The same strategy is exploited in the DCT calculation.
For the piecewise operations like square and log calculation,

every core process a subset of the operands. Moreover, SIMD
instructions are leveraged for the LP16 MFCC to compute the
FFT butterflies and the Periodogram, making use of vectorized
multiplications and sums between Complex int16.

The parallel optimized MFCC function is integrated into an
end-to-end Keyword Spotting (KWS) pipeline. Given an audio
clip of 1 sec (with a sampling rate of 16kHz), the computed
MFCC features feed a DNN model for classifying the audio
sample into one of the 10 speech command classes provided by
the dataset [4]. We consider the audio classification DS-CNN
models of [1], which achieve the best accuracy score among
the presented ones. DNN models are quantized to 8 bit for
the deployment on GAP8. A parallel C code implementation
of the inference function is obtained thanks to the GAPflow
toolset provided by the chip vendor.

To design an ultra-low-power and robust KWS audio appli-
cation, we perform speech command classification every 0.5
sec, hence considering a 50% of overlapping between input
audio clips. On the one side, the overlap leads to a higher
detection accuracy but, on the other side, imposes a latency
constraint more strict than a non-overlapped scenario because
the inference time, including both MFCC and the DS-CNN,
must be lower than 1sec− overlap. Additionally, we apply a
DVFS strategy, i.e. maximally reducing voltage and frequency,
to minimize the power consumption under the aforementioned
latency constraint.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed Integerized MFCC
approximations in terms of latency and accuracy, as scored by
the end-to-end KWS model, and we provide a system-level
energy evaluation.

To replicate the setup of [1], we trained the DS-CNN classi-
fication models, namely DS-CNN-SMALL, DS-CNN-MEDIUM
and DS-CNN-LARGE, on the MFCC features extracted from
1 sec audio clips of the Speech Commands dataset [4]. Con-
cerning the MFCC, we rely on the full-precision Tensorflow
implementation by setting the audio frame length to 40 ms and
20 ms of overlap, hence a total of 49 frames per audio clip to
classify. Despite the MFCC block computes 40 features, we
feed the CNNs with the first 10 coefficients of each frame, i.e.
10 × 49 MFCC features, without any accuracy penalty with
respect to larger feature maps, demonstrating that the majority
of the speech information resides in the first coefficients of the
Mel spectrogram. Moreover, we apply 8bit quantization-aware
training for the classifier. The trained and quantized CNN
models are deployed on the GAP8 platform, in combination
with our approximated MFCC functions HP32 and LP16.

Figure 2A depicts the computational cost of each step of
the MFCC for an individual 40ms frame, normalized with
respect to the HP32 single-core implementation. In the HP32
version, 90% of the time is spent during the FFT task. The
LP16 shows a more balanced computation partitioning, but
the FFT still remains the most expensive step, taking around
60% of the total time. The 8-cores implementation shows a
5.9× speed up. The discrepancy from the theoretical maximum



Fig. 2. (A) Inference time on single frame MFCC for each step, normalized
to the total HP32 computation cycles. (B) Number of cycles of both KWS
pipeline blocks in case of LP16 and HP32 MFCC preprocessing and with the
different sized CNNs. The MFCC percentage cost is indicated over each bar.

speed up of 8× is due to two main factors: (i) most of the
FFTs stages are parallelized on the outermost loop (Section
IV), which results advantageous for the early steps but the
number of iterations rapidly decreases along the stages causing
an unbalanced execution on the 8 cores, (ii) the parallel Mel
Filter sparse computation processes a subset of the filter banks
on each core and, therefore, some of the cores receive large
bandwidth filters while others very selective ones. This makes
the computation unbalanced among the cores and leads to
a speed-up of only 4.5× on this block. Overall, the 8-core
execution of our LP16 MFCC algorithm resulted 9.8× faster
in terms of clock cycles than the floating-point MFCC running
on an FPU-equipped MCU such as the STM32L4.

Figure 2B, on the other hand, shows the latency breakdown,
in terms of clock cycles, of the end-to-end KWS pipeline when
running on GAP8. For all the DS-CNN models, we report the
performance for the single-core and 8-cores implementation,
when leveraging the HP32 or the LP16 MFCC algorithm. In
case of low-complexity DNN models, i.e. DS-CNN-SMALL
or DS-CNN-MEDIUM, a less-approximate HP32 MFCC algo-
rithm leads to a processing time for feature extraction higher,
respectively by 5.2× and 1.3×, than the DNN inference time.
Also for the largest network, the HP32 MFCC takes 38% of
the total processing time if running on a single core. With a
> 3× speed up w.r.t. the high precision version, the LP16
MFCC solution shows a more balanced computation taking
the 53%, 23% and 14% for respectively the DS-CNN-SMALL,
DS-CNN-MEDIUM and DS-CNN-LARGE KWS.

Table I reports the accuracy on the Speech Command dataset
of the deployed KWS pipeline, which combines the quantized
DS-CNN models with our Integer MFCC versions. These
solutions are compared against the baseline model trained with
full-precision MFCC features and quantized CNN (Tensorflow
implementation). When featuring a HP32 MFCC, the KWS
DNN models results as accurate as the full-precision baseline.
The LP16 approximation, instead, presents an accuracy degra-
dation with respect to the baseline of less than 0.6% for all
the models. Furthermore, we report in Table I the number of
clock cycles to compute the MFCC feature extraction and the
DS-CNN inference on the 8 cores of the GAP cluster.

Lastly, we analyzed the power consumption of a KWS
always-on device when leveraging the most energy-efficient
configuration, i.e. LP16 MFCC coupled with a DS-CNN-

TABLE I
ACCURACY AND PERFORMANCE OF MFCC+CNN KWS

TF-MFCC + HP32 MFCC + LP16 MFCC +
TF Quant CNN GAP CNN GAP CNN

CNN (#MAC) Acc. MCyc Acc. MCyc Acc. MCyc
SMALL (2.7M) 93.45 - 93.50 3.1+0.6 92.86 0.8+0.6

MEDIUM (9.8M) 94.10 - 94.05 3.1+2.2 93.99 0.8+2.2
LARGE (28.4M) 94.62 - 94.72 3.1+6.2 94.09 0.8+4.8

SMALL model. Because the SoC cannot be powered off
to guarantee continual audio data acquisition for KWS, we
apply a DVFS technique to reduce the system average power
consumption. To this aim, we set the SoC Voltage to 1V and a
Fabric Controller & Cluster frequencies to respectively 10MHz
and 7MHz. In this operating point, GAP8 shows an average
power consumption of 2.4mW. If combined with a microphone
sensor consuming 1mW, the system achieves a lifetime of 35
days when powered with a single 2000mAh (1,2V) AA battery.

VI. CONCLUSION

In this work we presented integer-only arithmetic solutions
for MFCC feature extractions. A high-precision approximate
function showed a negligible accuracy loss with respect to
a full-precision baseline, but resulting 3× slower than a
low-precision 16 bit approximation, showing a 0.6% lower
accuracy on a KWS use case. Our solutions, when coupled
to a DNN model for KWS, and deployed on the multi-core
GAP8 presented a power cost of 2.4mW, which leads to a
battery lifetime of 35 days.
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