
From Structured Requirement for
Cyber-Physical Systems to Process Algebra:

A Research Preview

Mathilde Arnaud1, Boutheina Bannour1, Guillaume Giraud2, and Arnault
Lapitre1[0000−0002−2185−4051]

1 Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2 RTE

Abstract. [Context and motivation] Cyber-Physical Systems (CPS)
are made up of complex real-time computational components that con-
trol physical entities. The design of these components must take into ac-
count non-determinism, intrinsic temporality and resilience to unwanted
behaviors. [Question/problem] These aspects make it quite difficult to
formulate requirements that describe CPS behaviors precisely, with the
risk of being misunderstood or of conveying unintended design choices.
[Principal ideas/results] We propose to use a controlled natural lan-
guage to structure CPS requirements which has the advantage of: i) being
easily graspable by stakeholders with various levels of proficiency so as
to communicate clearly, ii) enabling requirements analysis using simula-
tion or formal validation. [Contribution] To automate this analysis of
structured requirements, we propose to translate them into a temporal
process algebra. Our approach is implemented and is motivated by a
real-world use case from european project CPS4EU. 3

Keywords: Structured Requirements · CPS design · Process Algebra

1 Introduction

Context. Early validation of Cyber-Physical Systems (CPS) requires the consol-
idation of requirements. But it turns out to be a tedious task due the nature
of CPS behavior. In fact, the control logic of physical devices can quickly be-
come complex but the behavior of CPS shall remain reactive, available and
resilient within acceptable times. In industry, CPS requirements are still mostly
expressed in natural language. One major challenge is still the cross-check of
such requirements. Missing or contradictory requirements can create a costly
misunderstanding in the CPS development process.

3 This work was financially supported by European commission through CPS4EU
project that has received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 826276. The JU receives support from the European Union’s
Horizon 2020 research and innovation programme and France, Spain, Hungary, Italy,
Germany.

2 M. Arnaud et al.

Related work. The use of formal methods can help validate CPS require-
ments. Some approaches transform natural language requirements into LTL us-
ing NLP [1]. However, due to structuring and style variability, the formal set
of requirements generated may not represent the intended meaning [2]. To pre-
vent problems with the semantics obtained, other approaches offer to write the
requirements in a strongly constrained language [7] which allows an automatic
translation to temporal logic. The semantics obtained through any of these meth-
ods must be checked by a specialist. We are interested in works which propose to
specify natural language requirements with template structures such as EARS [5]
and Rupp [6]. These are a kind of fill-in templates which facilitate the specifi-
cation of event-driven, state-driven system behaviors. Automating writing and
analyzing such semi-formal requirements for particular domains of application
is still a challenge [4].

Contribution. We ground our approach on EARS templates for the specifi-
cation of CPS requirements in which we introduce timing details to refine the
event-driven, state-driven system behaviors. This paper presents an automatic
transformations of such requirements into a process algebra that we designed
in the DIVERSITY tool [3]. Via the transformation, behaviors of CPS systems
specified by the requirements can be explored in the tool. A simplified version
of a CPS4EU case study illustrates our approach throughout the paper.

2 Requirement specification

In order to handle real-world applications of state-driven, event-triggered sys-
tems with timing, we enrich process algebras with timing concepts and modali-
ties. Our goal is to express the set of requirements with process algebra so as to
be able to generate scenarios displaying the behavior of the system as specified
by the requirements to help evaluate their accuracy.

Fig. 1: Requirements for NAZA (Nouveaux Automates de Zones Adaptatifs)

2.1 Motivating example/Illustration/Use case

We illustrate our approach by showing how it can be applied on a real-world
use case : electrical networks involving intermittent energy sources. To avoid

Causality Analysis of Timed Structured Requirements 3

overload without raising the overall network capacity, it is necessary to manage
dynamically the flow of electricity through levers such as batteries or production
modulation. Which mechanisms to trigger must be determined very quickly and
this role must therefore be entrusted to a software component called NAZA.

We used our approach to analyze functional requirements R1 to R6A given in
Fig. 1 written in Structured Natural Language (SNL) presented in Section 2.2.
In this use case, the NAZA automaton is in charge of computing levers setpoints
(cf R1). When the computation is successful, it then uses consensus (cf R2) and
sends the results to middleware (cf R3,R4,R5). When the computation fails,
it must launch a backup algorithm (cf R6A). Our analysis revealed possible
deadlocks and we proposed to replace requirement R6A by requirements R6B,
R7 and R8, using two modes (nominal and backup) to express the behavior
more precisely.

2.2 Structured Natural Language

We have structured requirement statements by using a grammar based on well-
established method EARS [5]. A user-defined glossary is tailored to the needs
of the requirement engineer : it defines systems, triggers, and also equivalence
for ease of use (e.g. ”calculate levers setpoints”/”levers setpoints calculations”).
Each requirement statement is expressed by a (possibly complex) precondition,
followed by a realization, which specifies the action of the system.

Nominal and unwanted behavior requirements are initiated only when a
triggering event occurs, they are constructed respectively with keywords when
(e.g. R7) and if (e.g. R6B). State-Driven requirements are active while the
system is in a defined state and are constructed with keyword while (e.g. R6B).

We introduce details to enhance the sequencing of system behaviors: they can
be triggered periodically, subsequently to other behaviors, or within some time
slot. Periodic behaviors are initiated according to a specified period, they are
expressed through pattern “Every ⟨ period ⟩” (e.g. R1, R3, R4, R5). The context
in which requirements are executed can be detailed through two constructs :
“upon ⟨ system response ⟩” specifies that the behavior happens subsequently
to some other behavior; “within ⟨ timing interval ⟩” specifies that the behavior
happens within the specified interval. R6B is an example of a combined use of
these constructs, exemplifying that requirements can be complex and use several
of these constructs at the same time.

In order to prevent ambiguity arising from the use of synonyms, we favor the
use of repetitions of expressions in the glossary (e.g. R3, R4, R5). This makes
requirements as simple as possible and thus preserves readability and unity.

3 Target process algebra

Time domain and datatype. Clocks are typed in a dense time domain T
isomorphic to the set of positive rational numbers Q+. Given a set of clocks Clk,
a clock valuation v is a mapping v ∶ Clk → T . The set F(Clk) of clock formulas is

4 M. Arnaud et al.

built up recursively out of logical conjunction, disjunction and atomic formulas
of the form True, False, clk&d, where d is a constant duration (typed in T) and
& ∈ {<,≤,>,≥}. The set of clock invariants I(Clk) is defined by conjunctions of
formulas of the form clk ≤ d or clk < d. Valuations can be canonically extended
to formulas as usual.
Actions and states. Let Act be a set of actions which contains the silent action
τ ∈ Act. Let A ⊆ Act ∖ {τ} be a partition I ∪ O. Elements a of I (resp. of O)
are called inputs and denoted by ?a (resp. called outputs and denoted by !a). In
a parallel composition, inputs and outputs can synchronize resulting in τ . We
denote ?a =!a (and vice versa). Let S be set of states with initial state s0 ∈ S.
Processes. A process term is defined by the following syntax:

p ∶∶= [s][φ]a{R}⊳s′ ∣ inv(ψ) ∣ nil ∣ p;p ∣ alt(p, p) ∣ par(p, p) ∣ loop(p)
The basic building block of a process is of the form atom = [s][φ]a{R}⊳s′ with
an enabling state s ∈ S, an enabling clock formula φ∈F(Clk), an action a ∈ Act,
a set of clocks R⊆Clk to be reset, and a target state s′ ∈ S to evolve into. We may
consider simpler atoms where some of these elements are dropped. For instance
[φ]a{R} denotes that enabling state can match any arbitrary state and that no
state change is to be made. inv(ψ) with ψ ∈ I(Clk) defines the clock invariant
that has to be satisfied on time passing; nil is the empty process; processes can be
composed in sequence (;); using alternatives (alt); in parallel (par); or repeated
in sequence zero or more times(loop).
Small-step execution. Parallel processes can interleave but they must comply
with current invariants. We introduce a decomposed form of invariants whose
purpose is to identify invariant of left or right process of a parallel composition. A
concurrent invariant, or co-invariant, is defined as follows, in which ψ ∈ I(Clk):

Ψ ∶∶= ψ ∣ Ψ . Ψ ∣ Ψ .L Ψ ∣ Ψ .R Ψ
We define functions L, R and f on co-invariants that return respectively the left
side of the co-invariant, the right side, and the conjunction formula representing
the conditions at the time of evaluation. If Ψ is in a decomposed form Ψ1 .X Ψ2

with X ∈ { , L,R}, L(Ψ), R(Ψ) and f(Ψ) denote Ψ1, Ψ2 and f(Ψ1) ∧ f(Ψ2)

respectively, otherwise L(ψ), R(ψ), f(ψ) is ψ.
par (
 [clk=1] a { }
,
 inv(clk<1) ;
 [s0][0.5 <=clk<1] b { } |> s1 ;
 inv(True)
)ec0

s0< ev:1, h:0, w:1 >
CoInv: True

ec1
s0< ev:2, h:1, w:1 >

CoInv: True/._(clk<1)

par (
 [clk=1] a { }
,
 [s0][0.5 <=clk<1] b { } |> s1 ;
 inv(True)
) ec3

s1< ev:2, h:3, w:1 >
CoInv: True/._(clk<1)

par (
 [clk=1] a { }
,
 inv(True)
)ec2

s0< ev:2, h:2, w:1 >
CoInv: True/._(clk<1)

par (
 nil
,
 inv(True)
) ec4

s1< ev:2, h:4, w:2 >
CoInv: True/._True

ec5
s1< ev:2, h:5, w:2 >

CoInv: True

 nil

p2

p1

p
p'2

Fig. 2: Execution graph of a toy process

Operational rules of process execution are given in Table 1. The execution is
defined up to an execution context ec = (s, v, Ψ) which represents the necessary
information to perform an execution step, namely the current state s, the current
valuation v of clocks and the current co-invariant Ψ to be applied. The execution
process is inductively defined on the form of the process term. If p is an atom then
it evolves to nil under the constraint that time elapsing is compatible with its
clock formula and current co-invariant. If p is an invariant inv(ψ), then function
coinv upd is called to update the relevant side of the co-invariant. The case

Causality Analysis of Timed Structured Requirements 5

of parallel composition is the most subtle when dealing with interleaving (other
rules are classic). It uses a function coinv which inductively computes the formula
of a co-invariant of process p given a current co-invariant Ψ (of an ec). Concerned
part of Ψ is returned in case no new invariant is encountered.

A toy process p is given in Fig.2 for illustration. It shows how actions a and
b will be interleaved in the context of the parallel composition. From initial
context ec0 = (s0, [clk → 0, clk ∈ Clk], Ψ0) with Ψ0 = True, both left process p1
and right process p2 are evaluated. p2 evolves into p′2 which allows to compute
a new context ec1. On the other hand p1 cannot be executed. In fact, the rule
PAR1L requires the execution of p1 under co-invariant L(Ψ0).Lcoinv(p2,R(Ψ0))

in which L(Ψ0) = True and coinv(p2,R(Ψ0)) = clk < 1. Yet the execution of
p1 is enabled by formula clk = 1, while time elapses of a duration < 1 at this
point of execution in accordance with co-invariant. Later from context ec3, the
execution of process p1 becomes possible: rule PAR1L applies as co-invariant
becomes True .L True (was True .L clk < 1 as explained before) which allows
time elapsing with any duration. Once the co-invariant is applied on some leaf
process (here left), it is returned in a neutral form True . True. When both
parallel processes end, the co-invariant is merged by rule PAR3join into True.

ATOM1
[s][φ]a{R}⊳s′ (s, v,Ψ)

d.a
↝ nil (s′, v′, Ψ)

⎛
⎜
⎝

v0 = v[clk → clk + d, clk ∈ Clk], d∈T
v0 ⊧ φ ∧ f(Ψ)

v′ = v0[clk → 0, clk∈R]

⎞
⎟
⎠

INV
inv(ψ) (s, v,Ψ)

ε
↝ nil (s, v, coinv upd(Ψ,ψ))

(v ⊧ f(Ψ))

ALT1L
p1 ec

`
↝ p′1 ec

′

alt(p1, p2) ec
`
↝ ec′

SEQ1
p1 ec

`
↝ p′1 ec

′

p1;p2 ec
`
↝ p′1;p2 ec

′

LOOP1
p ec

`
↝ p′ ec′

loop(p) ec
`
↝ p′; loop(p) ec′

ALT2L
alt(nil, p) ec

ε
↝ nil ec

SEQ2
nil;p ec

ε
↝ p ec

LOOP2
loop(p) ec

ε
↝ nil ec

PAR1L
p1 (s, v,L(Ψ) .L coinv(p2,R(Ψ)))

`
↝ p′1 (s′, v′, Ψ ′)

par(p1, p2) (s, v,Ψ) ↝ par(p′1, p2) (s′, v′, coinv upd(L(Ψ) .L R(Ψ), Ψ ′))

PAR2sync

p1 (s, v,L(Ψ) .L R(Ψ))
d.a
↝ p′1 (s′, v′1, Ψ

′
)

p2 (s, v,L(Ψ) .R R(Ψ))
d.a
↝ p′2 (s′, v′2, Ψ

′
)

par(p1, p2) (s, v,Ψ)
d.τ
↝ par(p′1, p

′

2) (s′, v′, Ψ ′)

⎛
⎜
⎝

v′(clk) = {
v′1(clk) if v′1(clk) = 0
v′2(clk) else

clk ∈ Clk

⎞
⎟
⎠

PAR3join
par(nil,nil) (s, v,Ψ)

ε
↝ nil (s, v, f(Ψ))

coinv upd(Ψ,Ψ ′) = match Ψ with
∣ ψ → Ψ ′ ∣ Ψ1 . Ψ2 → Ψ ′ ∣ Ψ1 .R Ψ2 → Ψ1 . R(Ψ ′) ∣ Ψ1 .L Ψ2 → L(Ψ ′) . Ψ2

coinv(p,Ψ) = match pwith
∣ atom → f(Ψ) ∣ par(p1, p2) → coinv(p1,L(Ψ)) ∧ coinv(p2,R(Ψ))

∣ nil → f(Ψ) ∣ alt(p1, p2) → coinv(p1, Ψ) ∨ coinv(p2, Ψ)

∣ inv(ψ) → ψ ∣ loop(p) → coinv(alt(p,nil), Ψ)

∣ p1;p2 → coinv(p1, Ψ)

Table 1: Process execution rules

Transformation. The main transformation patterns into process algebra are
defined as follows: System responses which share the same trigger are composed
in parallel (Fig.3a); triggers can be non-determistically produced upon a sys-

6 M. Arnaud et al.

tem response (Fig.3b); it is assumed that each (sub-)system is reactive with a
topmost enclosing loop (Fig.3c) which can be associated a period d (inv(clk ≤ d)
constraints time elapsing of an iteration, at the end of which the system clock
clk is reset, cf [clk = 5]{clk}). A synchronization is inferred if a system response
is triggered by some other system behavior (Fig3d). When a system response oc-
curs within an interval [d1,d2] (Fig.3e), a dedicated clock wclk is used to encode
such constraint (inv(clk ≤ d ∧wclk ≤ d2) sets the upper bound d2 on time elaps-
ing until the response occurs). State-driven triggers/responses are transformed
by variants patterns involving enabling states or state change constructs of the
process algebra. The transformation is illustrated by the NAZA Core process for
requirements R1 + . . . + R5 + R6A which depicted with the graphical convention
of Fig.3g. It shows the compositional modeling using process algebra which pro-
vides powerful constructs to built larger processes up from smaller ones specified
by the unit requirements of the SNL.

Tool support. We prototyped edition and transformation of the SNL require-
ments as a web application using Jupyter Notebook environment (Fig.1 & Fig.3g).
We have implemented the small-step execution of process algebra in the model-
based symbolic execution tool DIVERSITY [3]. Symbolic execution computes
compact representation of execution graphs in which rational-valued clocks are
assigned symbolic parameters rather than concrete values. SMT solvers are used
to check satisfiability of clock formulas and produce a new (symbolic) execution
context. The technique allowed us to explore efficiently behaviors of the gener-
ated processes and detect deadlocks. Those are in our case timelocks, typically
non-compatible delays with system period, cf Fig.3f.

when
if

every par

⟨
system
response

⟩

⟨trigger⟩

(a) Parallel
responses

alt

upon

⟨
system
response

⟩

⟨trigger⟩

(b) Non-deter-
ministic triggers

loop

every

inv(clk≤d)
[clk=d]

{clk}

d

system
invariant

⟨period⟩

(c) Periodic repetition

upon

system 1 system 2

system 1
response

⟨
system 1
response

⟩

⟨?trigger⟩⟨!trigger⟩

(d) Synchronization

within
interval

inv(clk≤d ∧ wclk≤d2)

inv(clk≤d)

{wclk}

[d1 ≤wclk≤d2]

[d1, d2]

⟨
system
response

⟩

/system
response

⟨trigger⟩

(e) Time constraint

ec9
s0< ev:1, h:11, w:2 >

CoInv: (clk<=5)/._(wclk<=60)
DEADLOCK

UNSAT ([10 <= wclk <= 60])
execute backup algorithm ;
inv(clk <= 5) ;
[clk= 5] { clk } ;
loop(...)

(f) Time conflict (g) Generated process

Fig. 3: Main transformation patterns (a)-(e) – Illustration

Causality Analysis of Timed Structured Requirements 7

4 Conclusion and future work

We have shown how to infer processes from a set of requirements in structured
natural language with timing and modal details for CPS. Our approach is applied
on a real-world case issued from electricity transmission industry. Resulting pro-
cesses can be displayed in a readable graphical depiction and can be unfolded
by small-step into execution graphs. A challenging continuation is to design
methods to elucidate (and visualize) relevant executions of the processes with
requirement traceability. We also plan to apply the approach on more use cases
in order to challenge the expressiveness of the set of structured requirements.

References

1. A. Fantechi, S. Gnesi, G. Ristori, M. Carenini, M. Vanocchi, and P. Moreschini.
Assisting requirement formalization by means of natural language translation. In
Formal Methods in System Design, volume 4, pages 243–263. Springer, 1994.

2. J. G. Greghi, E. Martins, and A. M. Carvalho. Semi-automatic generation of ex-
tended finite state machines from natural language standard documents. In Int.
Conf. DSN Workshops, pages 45–50. IEEE, 2015.

3. The CEA List Institute. Eclipse Formal Modeling Project, 2020 (accessed November
15, 2020). https://projects.eclipse.org/projects/modeling.efm.

4. L. Lúcio, S. Rahman, C. Cheng, and A. Mavin. Just formal enough? automated
analysis of EARS requirements. In Int. Conf. NFM, pages 427–434. Springer, 2017.

5. A. Mavin, P. Wilkinson, and M. Novak. Easy Approach to Requirements Syntax
(EARS). In Int. Conf. RE, pages 317–322. IEEE, 2009.

6. K.P.C. Rupp. Requirements Engineering Fundamentals: A Study Guide for the
Certified Professional for Requirements Engineering Exam, Foundation Level–IREB
Compliant. Rocky Nook, 2015.

7. L. Wenbin, H. J. Huffman, and T. Miros law. Temporal action language (TAL): A
controlled language for consistency checking of natural language temporal require-
ments. In Int. Conf. NFM. Springer, 2012.

