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EXECUTIVE SUMMARY 

The deliverable D5.4 comprises the guidelines, potential, limits and risks of the proposed toolchains and clusters 
of tools identified in previous deliverable D5.3. The main scope of the deliverable is to further specify the 
interactions proposed in deliverable D5.3, enriched by the experience and expertise of the partners, and guided 
by specific application scenarios. The specification is not only a necessary cornerstone for the POCs and 
demonstrators in the next stage (integration deliverable) but serves as the main reference for the generalization 
of the presented approaches into other CPSs and future projects.  
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1 INTRODUCTION 

1.1 Purpose 

In order to facilitate the integration of CPS components into the overall system of systems architecture, 
we have provided in previous deliverables of WP5 engineering scenarios and clusters of enabling tools 
(deliverable D5.3) that describe the applicability and envisioned synergy of the project partners’ 
capabilities for design, test, deploy and verification of CPSs. This document (deliverable D5.4) further 
specifies these scenarios and clusters, by providing guidelines and best practices to enable the required 
interaction between tools. These guidelines are provided from the point of view of the technology 
providers and industrial partners, and built atop the expertise and experience of each contributor in 
their respective fields. 

Some of the main challenges for integration of tools and architectures in CPS systems, rely on the 
complexity of the control/communication systems, on the variety and heterogeneity of the 
components (sensors, actuators, sub-systems) and their composition to provide higher-level services 
and functions, in an aggregated and complex structure. The main contributions to the reuse, 
integration and deployment of CPSs are two folded: 1) the toolchains are enablers to support 
deployment of components into pre-integrated architectures (PiArchs specified in WP6), and 2) the 
toolchains are enablers for the integration of PiArchs into cyber physical systems of systems (CPSs). 
Hence, there is the need for guidelines, recommendations and best practices on how the proposed 
tool-chains can be integrated and applied, and on how the clusters of tools can interact.  

Part of the challenges of the integration of heterogeneous services and tools, like distributed co-
simulation, iterative code generation, scenario based simulation and AI-Based CPS system toolchain, 
rely on the proper delimitation and scope of each tool and the tool’s requirements and mechanism for 
interoperability and analysis. The specifications in this document aim to provide the next generation 
of industrial projects with basis on how to integrate the available services, in the best manner in the 
context of the partner’s tools and capabilities. The described resources are not limited to CPS4EU 
application, but are also extendable/adaptable to other CPS application domains. Ongoing 
development of demos, proofs of concepts and approaches in close interaction with these guidelines 
are in progress, and thus demonstrators of the integration and interaction approaches that exemplify 
and fine-tune these guidelines, will be provided at the end of the project.  

The deliverable D5.4 specifically focuses on: a) the integration of simulation tools with approaches 
such as system design, code generation and optimization tools, and on b) knowledge-based 
engineering to cope with standardization, interoperability, exchangeability and reasoning services that 
enhance the design, test, deployment, maintenance and evolution of CPSs. Even though conceptually 
the approaches are tool/technology independent, it must be pointed out that there is an important 
effort required to specify the interaction and combination between the tools and partners. The 
deliverable presents the results of those efforts, and provides a good basis for dimensioning it.  

1.2 Scope 

This document covers tasks: 

• T5.1: AI integration in CPS 

• T5.2: Simulation for CPS 

• T5.3: Trustworthy system engineering 

• T5.4: Tool chain development and integration 

1.3 Link to other documents/TASKS 

ID Description 
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WP6 CPS Pre-integration 

WP7 CPS Automotive 

WP8 CPS Industry automation 

WP9 CPS for other industrial sectors 

 

1.4 Definitions, acronyms, and abbreviations 

Definition / acronym / abbreviation Description 

CPS Cyber-Physical System 

AI Artificial Intelligence 

DL Deep Learning 

NN Neural Network 

DT Digital Twin 

KB Knowledge Base 

PDDL  Planning Domain Definition Language 
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2 INTEGRATION SCENARIOS 

In this section, we present the scenarios that portray the interaction and integration of tools, as 
described in deliverable 5.3. The following subsections aim to further specify the envisaged integration 
of tools in the context of CPSs and pre-integrated components, and provide guidelines and best 
practices to achieve the intended synergy. 

2.1 HETEROGENEOUS CO-SIMULATION 

 

Figure 1 - Distributed Co-Simulation Execution 

2.1.1 Introduction and purpose 

Cyber-physical systems are often part of multi-domain heterogeneous complex systems. Simulating 
the complete system, or parts of it, and analyzing the component's behavior to be integrated is a 
widespread practice to ensure its correct operation before deployment in the real system. Due to the 
different subsystems' heterogeneity, incorporating them within the same simulation becomes a 
complex process. 

The Heterogeneous Co-Simulation cluster (see Figure 1) focuses on the integration of simulation 
components in distributed simulations, when they are generated from different tool eco-systems. Each 
of these components is responsible for simulating a specific characteristic and all together they will 
form a complex simulation (interoperability). Additionally, once a simulation component is developed, 
it can be reused for other simulations, reducing development time (reusability). 

This cluster aims to reduce the integration's effort in a heterogeneous co-simulation, improving both 
interoperability and reusability of the simulation components. To achieve this, we study the possible 
interactions between the different tools involved and the methodology to develop, adapt, and 
integrate the simulation components. 
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2.1.2 How is this going to be achieved  

The heterogeneous co-simulation cluster is divided into two steps: The first one is the generation of the 
simulation components, which must follow some guidelines to be executed in the same co-simulation. The 
second step is the execution of the co-simulation, in which the different components, created by different tools, 
are coordinated in a common scenario. 

The following sections explain these steps. Section Erreur ! Source du renvoi introuvable. describes the context 
of the distributed co-simulation and how the execution is coordinated, and section Erreur ! Source du renvoi 
introuvable. introduces the different methods to generate simulation components. 

2.1.2.1 Execution of the co-simulation 

2.1.2.1.1 Coordination of the distributed co-simulation: HLA (RTI) 

The distributed simulations require a complex architecture. Therefore, it is desirable to use 
middleware that can help in the integration and development of new simulation implementations by 
reusing existing modules. In this cluster, we use a middleware based on the High Level Architecture 
(HLA). 

HLA is an IEEE standard  IEEE 1516-2010  for distributed computer simulation systems. In the HLA 
standard, a distributed simulation is called a federation. A federation comprises several HLA simulation 
entities, called federate, which can interact with them using the Run-Time Infrastructure (RTI). The RTI 
represents a federation execution backbone and provides services to manage communications and 
data exchanges.  

A classical HLA federate consists of a simulation model and local RTI component (RTI ambassador).  The 
simulation model is a physical, mathematical, or logical representation of processes and systems. 
These entities can communicate with each other through the RTI, that manages the federation, 
authorizes federates to contact others, and provides various services such as time management. HLA 
proposes multiple time management systems to ensure that messages are sent correctly and do not 
violate causal constraints. 

Figure 2 shows a distributed simulation example showing the benefits of this approach. In the example 
there are four simulation units. Different technologies (Simulink, Modelica, etc.) can implement each 
one, but all must contain an RTI ambassador to interact with the RTI. This ambassador is encapsulated 
in the Communication Federate Library (Figure 4), that includes the procedures to initialise the 
federate and exchange data with the federation. 

The RTI keeps track of which federates subscribe to each type of object, attribute, or interaction, which 
means that the federates want to receive that type of data. It also keeps track of which federates 
publish them. 

The example consists of an inverted pendulum mounted on a cart that can move horizontally with a 
motor that generate thrust. It can be suspended stably in this inverted position by using a control 
system to monitor the pole's angle and keeping it balanced. To simulate the system, four federates 
were implemented; Pendulum, Controller, IMU, and Viewer federates. The pendulum has the physical 
dynamic of the system, the controller implements the algorithms to balance the pendulum, the IMU 
simulates the sensors, and the viewer shows a graphical representation. 

The pendulum publishes its angle position, and the IMU and Viewer subscribe to it. The IMU publish 
its position output, and the controller subscribes to it, and finally, the controller publishes its thrust 
output, and the pendulum subscribes to it. 
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Figure 2 - HLA Federation 

 

2.1.2.1.2 Explanatory diagram of the simulation execution flow  

An entire life cycle from a federate perspective is depicted in Figure 3. Usually, this execution flow is 
divided into three stages: initialization, operation and termination.  

The Initialization stage includes connecting the federate to the RTI and joining the federation execution. After 
that, the federate must specify the data exchange configuration. 

 

Figure 3 - HLA Federate Life Cycle  

 

In this case, the operation phase is responsible for executing the simulation step in a loop process. A 
logical time is assigned to each federate, which will increase in each step of the operation stage. The 
federation must explicitly request the time advance to the RTI, which will only be possible when the 
rest of the federation also advances. 

The termination of the simulation is carried out according to the strategy used. In a centralized 
approach, one federate is in charge of notifying the end of the simulation of the federation. Otherwise, 
each federation is responsible for defining when to end its execution. 
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2.1.2.1.3 Emulation of execution environments 

To run software designed for a specific platform in the distributed simulation, we use the UNISIM-VP 
machine emulator. UNISIM-VP[UNISIM Virtal Platforms] environment provides emulation capabilities 
at executable binary level which allows running and instrumenting (using DWARF standard debugging 
information format [Tool Interface Standard (TIS)] and symbol table of ELF file format) an unmodified 
software stack in binary form, the same that will run on the real target. UNISIM-VP environment 
supports several instruction sets: PowerPC, ARM, Intel, Mips, Sparc. In order to integrate with the RTI, 
the environment will non-invasively instrument execution (program and state) and use the 
Communication Federate Library to interface with the RTI. 

UNISIM-VP emulation capabilities can roughly estimate execution time and provide the same floating-
point precision as the real execution of the controller on the target processor. Therefore an emulation 
technique over a straightforward execution is more profitable than running the controller using the 
host compiler and floating-point precision. 

2.1.2.1.4 Visualization and analysis of the evolution of the simulation and results using art2kitekt  

art2kitekt provides a HLA-based simulation service where a series of components classified into 
viewers and checkers are included. Viewers to observe the evolution of the simulation and checkers 
to check the correct operation of the simulation elements. To do this, the art2kitekt simulation master 
federate (Figure 1) subscribes to objects and attributes of the different federations participating in the 
simulation during the configuration stage. During the execution stage, the master will publish the data 
generated by the different federations and the art2kitekt simulation service will be in charge of sending 
them to the configured viewers and checkers. The data received will be analyzed and will determine 
what the result of the simulation has been. 
 

2.1.2.2 Generation of the simulation components 

2.1.2.2.1 Generation of simulation models using FMU  

The Functional Mock-up Interface (FMI) is a free standard that defines an interface to exchange 
dynamic models using a combination of XML files, binaries and C code zipped into a single file.  

The implementation of this standard in tools, particularly in Matlab/Simulink, offers the capability to 
export (and import) simulation models as FMUs that support co-simulation in FMI version 1.0 and 2.0. 

Papyrus-Moka allows exporting the executable model as an FMU. The executable model must be 
designed within the Papyrus UML editor based on the Foundational Subset for Executable UML Models 
(fUML), the PSCS (Precise Semantics of UML Composite Structures) and the Action Language for fUML 
(Alf). fUML enables the definition of the structural and behavioural semantics of systems using class 
and activity diagrams. Alf enables to detail the model elements with textual notations, e.g. for the 
implementation of operations, for the model to become executable. Specific behaviours can also be 
described according to UML profile or alternative execution semantics, which will be considered 
through Moka in the executable model. In addition, Moka allows defining input data required to 
execute the fUML. Moka enables the export of such defined executable model as a black box 
standalone FMU unit compliant to FM standard API and provides a standard binary interface as a 
shared library. The FMU contains the structure of the UML model and implements the mandatory 
functions of the FMI API. This export requires first encoding the execution semantics of UML models 
to FMI API by generating corresponding C code and then the model-to-model transformation from 
UML model to XML file. 

TwinBuilder is a tool dedicated to the system simulation processes setup and deployment. It contains 
several methods and tools made specially to generate Reduced Order Models (ROM). All of these 
models can be generated a Model Exchange FMUs and can be exported as co-simulation FMUs. The 
generation process is a machine learning process based on simulation results. Static ROM Builders and 
Dynamic ROM Builders namely are generated based on data coming from results of simulation 
software. The simulation softwares can be any softwares from Ansys or not. It rely on very simple file 

http://unisim-vp.org/
http://dwarfstd.org/
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formats described in D5.3. All those models and system schematics engulfing them can be exported 
from TwinBuilder as a single FMU and can be tested and deployed in a Windows or Linux environment 
using Twin Deployer.  

2.1.2.2.2 Generation of simulation models using Simulink  

Sherpa engineering proposes C code generation for simulation models (controller part) using the 
Simulink coder toolbox. Then, the generated code can be used for deployment in various applications 
such as simulation acceleration, rapid prototyping, and hardware-in-the-loop (HIL) simulations. 
Moreover, the output generated code can be given as an input to the eCG tool for code optimisation. 

2.1.2.3 Code generation and optimization of simulation models  

emmtrix Code Generator (eCG) can be used to generate C code out of the Simulink models as an 
alternative to Simulink Coder from Mathworks. The code generated by eCG offers some advantages 
when used for CPS: 

• The advanced data type inference system ensures that the smallest, most memory-efficient 

data types for variables are used without affecting the accuracy of the results. This feature is 

primarily helpful for the execution of embedded systems with a low amount of memory. 

• Static memory management to avoid dynamic memory allocation. 

• The code is optimised for further automated processing by preserving most information 

inherent in the model directly in C code. This optimisation means that arrays are represented 

as multi-dimensional arrays. Data processing is preferably handled in for-loops with constant 

boundaries, and that functions are only kept when necessary. 

• It offers an integrated way to support dynamically sized arrays without the use of dynamic 

memory management. 

emmtrix Parallel Studio (ePS) can be used to take the C code from Simulink Code or eCG and further 
optimise it to execute the pre-integrated architectures of CPS4EU. The main focus here is the 
distribution of the individual parts of the model/application onto the available processing elements of 
the target architecture. Additionally, ePS offers different ways to customise the generated code for 
specific purposes like its execution within a simulator. The code can therefore be adapted to the 
requirements of the simulator and provide additional instructions or information. 

2.1.2.4 Adaptation of the models to common simulation architecture (HLA)  

The simulation components (federates) must be executed as part of the HLA federation, regardless of 
the tools or standards used to define the models. 

In the specific case of simulation models generated to comply with the FMU/FMI standard, most code 
generation tools provide a compressed FMU file containing the XML description model and the 
compiled library. The "FMU Adapter" can load the compressed FMU file at run-time, integrating the 
resulting model in a typical simulation architecture and avoiding linking it when the federate compiles. 

When a different standard generates the model, the generated code must provide an interface that 
updates its inputs, obtains its outputs and executes its simulation step. For this, all federates shall use 
the Communication Federate Library (Figure 4) to communicate with the RTI, allowing them to publish 
and subscribe to the simulation data and synchronize in time. 
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Figure 4 - Simulation Components Generation 

 

2.1.3 Recommendations, guidelines & best practices 

2.1.3.1 Guidelines about modelling a simulation component using FMU tools  

The modelling of executable models with Papyrus-Moka is based on graphical fUML models and textual 
Alf code, enabling the model detailed semantics of the specifications. The fUML model includes 
structural and behavioural viewpoints. The structural model is defined using class diagrams, composite 
structure diagrams with the classes' specifications, attributes, and operations. The behavioural 
viewpoint is modelled via state machines and activity diagrams, which describes step-by-step actions 
to be performed to model the operation's functionality. A more detailed specification can be defined 
using Alf textual notations. Specific behaviours, parameters simulation, e.g. preconditions for tasks and 
resources, can also be described in the UML profile model. An Alf test script may encode the test inputs 
and add them to the original model. The Alf script can be generated by accessing the context menu of 
the behavioural model in the model explorer view of Papyrus. The execution of a model usually starts 
by executing a kind of "main" activity responsible for instantiating objects and stimulating them if 
needed (through signals or operation calls). Moka provides some facilities to generate these kinds of 
activities. To do so, right-click on an element of the model, then go to Moka / Modeling Utils / Generate 
Factory. By nature, a fUML model is agnostic about the semantics of time. However, extending the 
execution model with a designed scheduler to reroute its usual fUML execution flow is possible. 

The functionality of exporting simulation models as standalone FMUs depends on the version of 
Matlab/Simulink. It is possible for Matlab R2020a and later versions to export Simulink models as a 
standalone FMU having a Simulink Compiler toolbox.  

The following link refers to the procedure to follow for the creation of FMU according to the 
recommendations of MathWorks: Export Simulink Model to Standalone FMU 
(https://fr.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html ). 

https://fr.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html
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Sherpa experienced the generation of FMUs from PhiSim models using the Simulink compiler. These 
are some recommendations: 

• Remove the top-level model and subsystem callbacks if they exist. 

• Declaration of the source files in the "Solver / Code Generation / Custom Code" part of the 

model properties (see Figure 5). 

 

Figure 5 - Simulink Code Generation configuration 

 

For R2018a and prior, third-party products export Matlab/Simulink models to FMUs for co-simulation. 
Modelon, for example, provides an FMI Toolbox that offers the capability to export simulation models 
as FMUs that support co-simulation in FMI version 1.0 and 2.0 from MATLAB/Simulink environments, 
provided a Simulink Coder license is available.  

The generated FMU contains the model implementation, as well as the metadata provided during 
export. Its version is independent of the version of the tool used. It is defined by the version of FMI 
standard chosen for the export. 

The model must satisfy these conditions for exporting: 

• The model must be in Normal or Accelerator simulation mode. 

• Root input and output ports must be of numerical data type. 

Suppose the co-simulation component is an FMU exported from Simulink. The local sample time for 
that FMU is the sample time of the original model. Only fixed-step solvers are supported. 

 

2.1.3.2 Guidelines about generation of simulation models from Simulink 

For the generation of C code from Simulink models, we need the following tools/toolboxes: 

• Matlab / Simulink / Stateflow (Optional), 

• Simulink Coder / Matlab Coder toolboxes, 

• Embedded Coder. 

To avoid issues with the code generation, the simulation models need some features: 

• Have a fixed-step solver, preferably discrete, 

• Respect a set of modelling rules concerning: 

o The used Simulink blocs, 

o The configuration of Simulink blocs (for example, sample time should be -1), 

o The architecture of the simulation model, with function-calls (recommended) or not, 

o The implementation of the Simulink blocs, 
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• Have a data dictionary that defines the parameters and variables of the model. 

Given a Simulink model, we only need to right-click on the model to generate an s-function and build 
it.  

 

2.1.3.3 Guidelines about code generation and optimization of simulation models 

As mentioned before, the code optimisation is based on the emmtrix Code Generator (eCG) and 
Simulink tools. Then, the following points must be taken into account: 

• Input via Simulink model: Simulink version 2016a or newer shall be used. If ordinary differential 
equations are needed, one of the following fixed-step solvers shall be used during simulation 
or code generation: ode1, ode2, ode4, ode5 or ode8. 

• Recommendations: Parts of the model without solver can be independently optimised for code 
generation. Subsystems can be used to structure models (subsystem structure is preserved 
whenever feasible) MATLAB® scripts or C code within S-Functions can be used. 

• Validation: Functional tests can be made use of to ensure the correctness of the generated 
code (automatable back-to-back tests for functional validation are supported). 

 

2.1.3.4 Guidelines about adaptation of simulation models (FMU/FMI and Simulink) to be executed 
in the common HLA federation  

The HLA distributed simulations require a complex architecture. Therefore, it is desirable to use 
middleware that can help speed up the integration and development of new simulation 
implementations by reusing existing modules. There are different approaches to reach it, in this case, 
the open source library “OpenRTI” have been selected as middleware. OpenRTI is a RTI library 
implementation based on C++ programming language. 

The federate needs some features to run, such as the step period, the inputs and outputs and the step 
functional code. These features can be added to the federate using software design patterns based on 
HLA, where the user can add the characteristics required for simulation. 

When the simulation unit is very complex or is developed in numerical computing environments such 
as Simulink or OpenModelica, it is convenient to package its functionality in simulation units that can 
be loaded dynamically. The FMI standard allows these actions, providing an interface to access 
simulation services. These functionalities can be solver engines, local variables, simulation step 
functions, etc. To adapt the FMU to the HLA environment, the user can read the model structure file 
that the FMU provides and generates the federate code to publish and subscribe to the data.  A"FMU 
adapter" is provided in order to facilitate this integration FMU/HLA. It is also possible to use a federate 
template code that guides the user through the FMU and the federate interface implementation. The 
user can change some parameters in the template to adapt his FMU to the federate. 

 

2.1.3.5 Guidelines about functional emulation using UNISIM 

UNISIM-VP environment functionally emulates the controller in an executable binary form that runs 
on the real target. The executable binary is obtained from a source code compiled with a cross tool-
chain for the target processor architecture and run-time. UNISIM-VP bridges the executable binary 
simulation and the Communication Federate Library using the non-invasive instrumentation 
capabilities of the UNISIM-VP environment. To seamlessly integrate into the Co-simulation 
environment, UNISIM-VP provides a configuration mechanism or uses an existing one to select which 
controller inputs and outputs to expose to the Publish-Subscribe Middleware. Indeed, at run-time, the 
UNISIM-VP environment samples controller inputs making these inputs available to the controller (e.g. 
in global variables) using the Federate Communication Library. Then, it runs the computing functions 
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of the controller executable binary and finally, sample and forward the controller outputs to the 
Communication Federate Library, following the execution flow of Figure 3. 

 

2.1.3.6 Guidelines about ontologies.  

The simulated entities of interest in the federates, can be semantically annotated (or come already 
with a semantic id if the origin design environment allows it) that identifies the type of entity being 
simulated and its properties. The application domain (e.g. Robot Arm, Rovers, Autonomous Vehicle, 
etc.) and the viewpoint (mechanical, logical, safety, etc.) define the ontological resources needed to 
integrate the simulated entities in a KB ecosystem. Part of the heterogeneity of the system can be 
lifted thanks to the abstract models ontologies provide, that is, even though there might be effort 
associated to properly adapt the content of the federates into the model, the model itself is 
independent from the implementation of the system. The co-simulation process and results can then 
be matched against constraints, coming from design, safety and/or planning. This enables property 
verification, consistency and complex querying of simulations of large systems of heterogeneous 
components. 

2.1.4 Risks and Considerations   

The federation models have to be defined to participate in the simulation. For this reason, the models of each 
federate, called SOM (simulation object model) IEEE 1516-2010 , are described in a XML file. These must be 
compatible with the general specifications of the simulation, which are defined in the FOM (federation object 
model) IEEE 1516-2010 , which is another XML file. Defining the FOM is an essential step for the RTI to manage 
communications. Once the simulation is configured through the FOM, it can be started, and federates can 
interact by publishing and subscribing to the necessary information. 

The FMU models contains mainly a description of the inputs and outputs via an XML file. To further extend and 
ease the introduction inside an HLA-based environment more meta data may need to be added in the future. 
This addition can be defined freely using Vendor Annotations. 

HLA-based simulation has similar problems as distributed computing. Often, the simulation nodes do 
not have the same performance and the workload could be not balanced, i.e. some compute nodes 
are overload while other compute nodes are left idle. In this case, the node with the worst response 
time will limits the simulation performance. 
 
Other risks are related to communications where some nodes can be in a network with low bandwidth 
or many losses of messages.  A federate can be waiting an indeterminate time for some messages, 
blocking the simulation. Furthermore, some companies could have a firewall that prevents 
communications outside the local network. In these scenarios, running a distributed simulation can be 
a complex task involving the company's systems administration team. Computer security must also be 
taken into account. An unauthorized person can exploit the communications between nodes in the 
distributed simulation to break into computer systems and access sensitive data. The system is 
addressing the time wise-collaboration of the different part of the whole simulation but does not 
address the post-treatment data location especially when we talk about distributed computing.  
 

2.1.5 Additional resources  

UNISIM-VP virtual platforms examples (simulator source code), Benchmarks (with source code and 
pre-built executable binaries), Tutorials (with videos) are available at http://unisim-
vp.org/site/index.html 

2.1.5.1 Documentation for the High Level Architecture (HLA) standard 

http://unisim-vp.org/site/index.html
http://unisim-vp.org/site/index.html
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The IEEE 1516-2010 standard was published in August 2010 by IEEE and is commonly known as HLA 
Evolved. It consists of: 

• Framework and Rules:  

o https://standards.ieee.org/content/ieee-standards/en/standard/1516-2010.html 

• Federate Interface Specification: 

o https://standards.ieee.org/content/ieee-standards/en/standard/1516_1-2010.html 

• Object Model Template: 

o https://standards.ieee.org/content/ieee-standards/en/standard/1516_2-2010.html 

Some books guide the construction of distributed simulation systems, with a particular focus on High 
Level Architecture, one of these is: 

• Okan Topçu, Halit Oğuztüzün. “Guide to Distributed Simulation with HLA (Simulation 

Foundations, Methods and Applications)” 

HLA-RTI implementations: 

• Pitch pRTI. Pitch Technologies. Commercial license. https://pitchtechnologies.com/prti/ 

• OpenRTI. FligthGear Project. Non-commencial LGPL license. 

https://sourceforge.net/projects/openrti/ 

2.1.5.2 Documentation for Functional Mock-up Interface (FMI) 

Releases and the latest development version of the specification are available on the FMI website: 

• https://fmi-standard.org/ 

FMU-FMI integration in a C++ implementation 

• FMU SDK. Free software development kit provided by Synopsys. It demonstrates basic use of 

Functional Mockup Units (FMUs) as defined by the Functional Mock-up Interface 

specifications. https://github.com/qtronic/fmusdk 

2.1.5.3 Documentation for hybrid distributed simulation based on HLA  and  FMI 

• Youssef  Bouanan,  Simon  Gorecki,  Judicael  Ribault,  Gregory  Zacharewicz,  Nicolas  Perry.  

"Including  in  HLA Federation  Functional  Mockup  Units  for  Supporting  Interoperability  and  

Reusability  in  Distributed  Simulation". Summer Simulation Conference, Jul 2018, Bordeaux, 

France. 

• Awais, Muhammad Usman, Peter Palensky, Atiyah Elsheikh, Edmund Widl, and Stifter 

Matthias. 2013. “The High Level Architecture RTI as a Master to the Functional Mock-up 

Interface Components.” In Computing, Networking and Communications (ICNC), 2013 

International Conference On, 315-320. IEEE 

2.1.5.4 Modeling simulation components 

A detailed tutorial about how to develop an executable model in Papyrus can be found following these 
links:  

• Papyrus Documentation:  

o https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution#Designing_FMUs_with

_Papyrus 

• Papyrus Eclipse YouTube Channel: the series of video tutorial on Designing FMUS: 

o https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA 

o https://wiki.eclipse.org/images/1/1f/MOKA-FMI-ModellingDays-13-09-2016.pdf 

• S. Guermazi, J. Tatibouet, A. Cuccuru, S. Dhouib, S. Gérard, et al. Executable Modeling with 

fUML and Alf in papyrus: Tooling and experiments. 1st International Workshop on Executable 

https://standards.ieee.org/content/ieee-standards/en/standard/1516-2010.html
https://standards.ieee.org/content/ieee-standards/en/standard/1516_1-2010.html
https://standards.ieee.org/content/ieee-standards/en/standard/1516_2-2010.html
https://pitchtechnologies.com/prti/
https://sourceforge.net/projects/openrti/
https://fmi-standard.org/
https://github.com/qtronic/fmusdk
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution%23Designing_FMUs_with_Papyrus
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution%23Designing_FMUs_with_Papyrus
https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA
https://wiki.eclipse.org/images/1/1f/MOKA-FMI-ModellingDays-13-09-2016.pdf
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Modeling, EXE 2015, Sep 2015, Ottawa, Canada. pp.3-8. 

2.1.5.5 Documentation for the generation of FMUs with Simulink 

• User guide and example about how to generate FMUs from Simulink using Simulink compiler 

are available here: 

o https://fr.mathworks.com/help/slcompiler/gs/export-simulink-models-to-functional-

mock-up-units.html 

o https://fr.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html 

• A detailed user guide for the use of the FMI toolbox is available here: 

o https://3pn0itd4zke1w5rdih3i1jfi-wpengine.netdna-ssl.com/wp-

content/uploads/2018/08/UsersGuide-FMI-Toolbox-2.6.4.pdf 

• A quick start with c code generation from Simulink models is given here 

o https://fr.mathworks.com/help/dsp/ug/generate-c-code-from-simulink-model.html 

 

Details tutorial and examples can be found in Ansys TwinBuilder documentation and on internet: 

• Resource Web Page: series of case studies  

o https://www.ansys.com/products/digital-twin/ansys-twin-builder 

• Multiple Webinars organized either on-demand or on a regular basis 

o https://www.ansys.com/events/digital-twin-webinar-series 

• Documentation for TwinBuilder 

o https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/Electronic

s/v211/en/Subsystems/TwinBuilder/TwinBuilder.htm 

2.1.6 Future work 

The Heterogeneous Co-Simulation cluster has components that are FMI compliant. From that, at least 
one or more federate will be required to adapt a FMI to HLA context, and FOM files must describe its 
interactions. According to this, we could automatically generate FOM files depending on the output 
and input of each FMU involved in the federation. It could also be possible to automatically generate 
a hybrid federate for each FMU needed in the distributed simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://fr.mathworks.com/help/slcompiler/gs/export-simulink-models-to-functional-mock-up-units.html
https://fr.mathworks.com/help/slcompiler/gs/export-simulink-models-to-functional-mock-up-units.html
https://fr.mathworks.com/help/slcompiler/ug/simulinkfmuexample.html
https://3pn0itd4zke1w5rdih3i1jfi-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/UsersGuide-FMI-Toolbox-2.6.4.pdf
https://3pn0itd4zke1w5rdih3i1jfi-wpengine.netdna-ssl.com/wp-content/uploads/2018/08/UsersGuide-FMI-Toolbox-2.6.4.pdf
https://fr.mathworks.com/help/dsp/ug/generate-c-code-from-simulink-model.html
https://www.ansys.com/products/digital-twin/ansys-twin-builder
https://www.ansys.com/events/digital-twin-webinar-series
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/Electronics/v211/en/Subsystems/TwinBuilder/TwinBuilder.htm
https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/Electronics/v211/en/Subsystems/TwinBuilder/TwinBuilder.htm
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2.2 ITERATIVE CODE OPTIMIZATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1 Purpose   

Main goal of the cluster is an optimization of an input source code written in Simulink, MATLAB or C. 
This shall be achieved through an iterative execution of the optimized code on a simulator (see Figure 
6). Static and dynamic code analysis shall be performed. They are responsible for the iterative nature 
of the algorithm. Additionally, scenarios complement the purpose by ensuring the code coverage and 
the use of all relevant application parts and by providing various input signals. 

2.2.2 How is this going to be achieved   

Tool interactions can be divided into three groups: 

1. Static optimization: Code Generation / Optimization & (Code-based) Analysis 
Generated C-code shall be put into a loop of static code analysis where after each iteration 
improved C-code shall be obtained and used for either another loop iteration or the input into 
the dynamic optimization part. 
 

2. Dynamic optimization: Code Generation / Optimization & Simulation / Deployment & 
Monitoring 

Code Generation / 
Optimization 

eCG / ePS (EMX) 

Art2kitekt (ITI) 

Scenarios 

System Entity Structures 
(TUC) 

(Code-based) Analysis 

Mocoanalyzer (UNA) 

Simulation / Deployment 

UNISIM-VP (CEA) 

Co-Simulation cluster (ITI) 

Monitoring 

THEMIS (INRIA) 

Art2kitekt (ITI) 

Input 

MATLAB / Simulink / C 

Platform/Application Model 

Specifications 

Papyrus (CEA) 

Figure 6: Iterative Code Optimization Toolchain 
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Generated C-code shall be put into a loop of dynamic code analysis where after each iteration 
monitoring shall be used for validation. Monitoring shall decide whether the C-code is 
sufficiently improved and consequently whether there is a need for another loop iteration. In 
this sense monitoring shall be used as a validation step. 
 

3. Definition of scenarios: Code Generation / Optimization & Scenarios 
Scenarios shall give meaning to the cluster by providing predefined input and ensuring that 
the correct C-code is executed 

In both static and dynamic optimizations, the improvement of the C-code is reflected through: 

- Smaller runtime 
- Less memory requirements 
- Higher functional safety 

Every tool interaction (arrow in diagram) within the workflow is described separately. 

 

2.2.2.1 Code Generation / Optimization => (Code-based) Analysis  

The emmtrix tools output C code, potentially with optimizations from previous iterations. The C code 
is generated according to the C standard and can by further processed afterwards. 

Art2kitekt generates the structure of the application in C code, based on the platform (hardware) and 
application (software) models, and by analysing the time constraints set for the system. The generator 
creates the code taking into account the different process that the system contains. It implements the 
application skeleton with threads of execution with their corresponding priorities. Different tools, such 
as eCG from emmtrix or Simulink, can merge their functional code with the generated thread structure. 
Afterwards, C analysers can inspect the created code and optimises its structure. 

 

2.2.2.2 (Code-based) Analysis => Code Generation / Optimization  

Currently, the EMX tools can process additional constraints in specific XML and Json files, but with the 
help of the graphical user interface, more fine granular optimizations are possible. The supported 
optimizations can be placed in two distinct categories: parallelization (assignment to specific 
processing elements of the target architecture) and code transformations that can change memory 
layouts, loops or how expressions should look like. 

The results of the static code analysis allow the engineer to know if the code generated by art2kitekt 
meets the necessary quality and corrects potential vulnerabilities. 

Currently, UnA’s tool MoCoAnalyzer provides an iterative analysis workflow that starts during design 
phase by analysing model components with code artifacts. Therefore, model-based analyses 
approaches are used with input from diverse scenarios which are based on the CPS4EU meta-model. 
The resulting outcomes are used continuously during development phase to allow a final C code 
optimization. MoCoAnalyzer output depends on the used input (scenarios and data) and starting point 
in the analysis workflow. 

CEA’s tool UNISIM-VP provides profiling analysis of executable binaries against any metric (execution 
time estimation, number of executed instructions, memory and cache usage statistics) at instruction 
level, and at source code statement and function levels when these executable binaries comes with 
embedded DWARF debugging information. UNISIM-VP will export these profiling data as either JSON 
or XML data formats. CEA’s tool Frama-C together with UNISIM-VP can provide assertion-based 
verification of executable binaries against security issues provided that these executable binaries 
comes with embedded DWARF debugging information. Using this combination of formal and concrete 
analysis tool, the security expert can verify, debug and visualize security properties on executable 
codes. 
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2.2.2.3 Code Generation / Optimization => Simulation / Deployment  

The generated C code is optimized for the selected target platform and can be compiled by any 
compatible compiler in order to be executed in the simulation. The EMX tools allow the generation of 
special commands like pragmas or extra function calls to mark code for profiling or other things. 

Art2kitekt code generation service can be configured to generate POSIX compliant code, as well as 
RTEMS compliant. These applications can be deployed for different platforms such as x86, ARM or 
Leon3. 

About co-simulation, verifying the functionality in a simulated environment should be a previous step 
before deploying the code on the final platform. Section 2.1 defines a Heterogeneous Co-Simulation 
cluster based on the High Level Architecture (HLA) and the guidelines to integrate generated code from 
models into a distributed simulation. 

2.2.2.4 Simulation / Deployment => Monitoring  

To simulate the generated code is a very appropriate method to check the functionality of the 
application. This code must contain the monitors to generate the traces, that provide evidence of 
compliance with the functional requirements. Section 2.1 describes how the distributed co-simulation 
is coordinated and how the different components in the simulation are executed.  

The code generated by art2kitekt contains the monitors, which provides the monitoring traces that are 
stored during the execution or simulation of the application. They are lists of timestamped actions, 
such as the beginning of an activity or the change of context between two threads in a processor. Once 
the system simulation has finished, the information can be provided to the monitoring listener service 
at runtime or, depending on the characteristics of the system and time constraints, stored to send it. 

THEMIS uses a black-box approach to monitoring and finding bugs. THEMIS can be applied here 
probably with Papyrus PSCS, receiving traces that contain sufficient information to evaluate the 
specifications. The specifications should be high-level specifications spanning over multiple 
components of the entire system. The traces need to refer to the atomic propositions describing the 
state of the system. Indeed, as THEMIS uses time-stamped black-box approach where the actual 
system states and events are abstracted into the trace, instrumentation should be done collaboratively 
with system designers in order to ensure that sufficient information will be available during simulation 
the deployment. Moreover, we should be able to map events in traces to components in the 
architecture of the monitored system. 

CEA’s tool UNISIM-VP provides non-invasive instrumentation of executable binaries, in a way that it is 
possible to observe the binary code execution without modifying the code and the timing, and trigger 
programmed actions (online) such as recording the software activity for monitoring purposes, e.g. 
state of symbolic variables at breakpoints provided DWARF debugging information is available. 

2.2.2.5 Monitoring => Code Generation / Optimization  

Besides the optimizations already mentioned, additional timing and memory information could be 
used to improve the parallelization of the application onto the available cores. 

The art2kitekt monitoring service can obtain the worst execution times for the application activities 
after processing the traces captured in the execution. Art2kitekt can use these times to reallocate the 
threads' execution and priorities before the generation of code. Similarly, emmtrix tools can use this 
timing information to configure the code optimisation. 

Themis will generate verdicts for each monitored specification that can be formalized in LTL. These 
verdicts indicate whether the execution trace satisfies the specification or not, or whether it is 
inconclusive. 

2.2.2.6 Scenarios => Code Generation / Optimization  
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The EMX tools will generate the code as specified by the scenarios from TUC. This should improve the 
code coverage by providing important input data as well as allows the verification of the results of the 
execution of the applications. 

TUC responsibility is two-fold in this cluster. TUC’s Scenario Definition Language could be used to 
model all possible combinations of test cases for EMX tool. Its main goal in this cluster is to act as an 
assistance to set up a functional test bench. This includes not only the tool’s configuration but also 
setting up external factors like its interaction with other tools. This can ensure the correctness of the 
generated code. TUC’s SDL is also expected to be used for code coverage to ensure the important 
combinations of test cases are determined and executed. TUC will also provide input code for this 
cluster from “collaborative lifting” use case in WP8. The code will be generated C code from MATLAB/ 
Simulink model of the crane and the detection of the object to be lifted and its position estimation by 
a drone.   

2.2.3 Recommendations, guidelines & best practices 

2.2.3.1 CEA Guidelines 

• Input: 
o Executable binaries obtained from a source code compiled with a cross tool-chain for 

the target processor architecture and runtime, preferably crafted with embedded 
DWARF debugging information 

• Code Generation / Optimization: 
o For Code-Analysis: 

▪ Simulation variables names to sample must be provided for program 
profiling, e.g. execution time estimation, number of executed instructions, 
memory and cache usage statistics 

▪ An annotated C source code with ASCL (Abstract C specification language) 
assertions must be provided to apply safety/security checks with UNISIM-VP 
used in conjunction with Frama-C. 

o For Simulation / Deployment: 
▪ The target machine must be defined: e.g. processor instruction set 

architecture 
▪ The software architecture of run-time and operating system should be 

documented to leverage on hardware/software interface (e.g. run-time APIs, 
OS ABI, Hardware abstraction layer interfaces) to cut the simulation budget, 
speed-up simulation and ease deployment 

• Monitoring: 
o For Simulation / Deployment: the locations of points of interest (breakpoints) where 

to install hooks that observe the state of symbolic variables under monitoring 

2.2.3.2 EMX Guidelines 

• Input: 
o MATLAB and C input files shall be written according to the standards; 
o Code shall be statically analyzable (dynamic sizes, memory management etc. is 

difficult to analyze). 
• Scenarios: 

o Proper scenario coverage shall ensure that all parts of the code become executed; 
o Scenarios shall be compatible with the input. 

• Input from analysis: 
o Code-based analysis shall provide information on parts of the code that are to be 

changed, considering: 
▪ Security 
▪ Memory usage 
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• Monitoring: 
o Instrumentation of the source code shall be automated; 
o Information about the coverage of the specification shall show, where the code can 

be improved. In order to achieve this, the monitoring results shall have a unique 
reference to the appropriate source code. 

2.2.3.3 INRIA Guidelines 

• Input:  
o Traces: THEMIS expects to receive the components behavior abstracted as 

observations. For each component of the system, it expects a file/stream where each 
line represents a timestamp containing atomic propositions and their Boolean values. 
For example, for component 1 the file may contain 2 lines: task1_entered:t, 
task1_ended:t. The traces can be in text files or streams over network sockets. The 
instrumentation of the code to emit the observations needs to be handled by each 
tool/component. 

o Specification 
▪ The specification can be define using automata, LTL, or other formalisms. 

Themis expects multiple specification files written is a specific XML format. 

• Output: 
o Verdicts: emit a verdict in a truth domain that indicate the compliance of the system 

to the specification(s). 
 

2.2.3.4 ITI Guidelines 

• Input: 
o Platform and application models (hardware and software) shall be defined using 

art2kitekt editor to generate the thread structure code through the art2kitekt code 
generator service. 

• Code Generation: 
o Functional code can be merged with the thread structure code in order to obtain a 

functional time-constrained application. 
o The temporal constrains shall be defined in the deployment and execution model in 

art2kitekt. 
o Generating, on the one hand, the code with the thread structure and on the other, the 

functional code is a methodology that helps to isolate future changes in the temporal 
configuration of the application, without the need to modify the functionality. 

o The art2kitekt code generator service automatically includes the software monitors in 
the generated code, aiming to observe the temporal behavior of the application during 
its execution. 

• Monitoring: 
o Software monitors shall generate the monitoring traces when the application 

execution passes through them. These monitoring traces includes the timestamp of 
the execution and the information to locate the execution point. 

o Two methods are usually performed to collect the monitoring traces on runtime: 
▪ Continuous monitoring: Temporal traces captured by the software monitors 

are provided using an external interface during the execution of the 
application. The necessary time to read and send these traces shall be minor 
than the available time reserved for this task. 

▪ Snapshot monitoring: Temporal traces are captured during the snapshot 
duration and stored in a buffer. After the snapshot, the buffer is sent step by 
step during the execution of an idle task through an external interface. 
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o The monitoring traces shall be processed to obtain the temporal behaviour of the 
application, which is defined by: 

▪ The execution time and response time of the different tasks and threads of 
the application 

▪ The occupation of each processor and what task it has at all times. 
▪ The periodicity and jitter of these tasks. 
▪ The sporadic execution of asynchronous tasks, such as interrupts, and how 

they affect the execution of periodic tasks. 
• Input from monitoring: 

o The observed behaviour in monitoring shall provide the necessary information to 
analyse if the application is not feasible, and verify if one or more of the temporal 
requirements are not fulfilled. Note that the observed behaviour cannot be used to 
ensure that the application is feasible in all cases. Not all possible cases can be 
observed during execution. 

o The observed behaviour can be used to understand the application better and 
redesign the temporal configuration of the initial models. 

2.2.3.5 UnA Guidelines 

• Input: 
o Required are XMI files for scenario description and according C code files   
o XMI input files shall be written according to syntax standards 
o C Code shall be statically analyzable 
o Scenario safety and security requirements shall be provided 

• Scenarios: 
o Scenario models need to be conformed to CPS4EU meta model (WP1) 
o Scenarios must be depicted with MoCoAnalyzer Modeling Editor 

• Workflow: 
o First, scenarios shall be analyzed on model level to prepare input information for 

code-based analyses 
o Code-based analyses shall provide information about security vulnerabilities 

2.2.4 Risks and Considerations 

- Bad communication / interaction between the tools 
o Content of one tool’s output not compatible as the input of another tool 
o Not generic usage of all optimization steps 
o Have to provide diverse interfaces 

- Not improving upon the current solution 
- Making code worse 

o Increasing complexity of the code 
o Solution within dynamic optimization: monitoring during simulation 

- Term iteration not representative for static code analysis 
o Iteration might end up in one cycle 

- Feasibility of formalizing the specification into LTL formulae. 
- Possibility of instrumenting the target simulation of the system to retrieve sufficient 

information. 
- Availability of traces. 

2.2.5 Future work 

There are several major points that shall be considered for the future work: 

• Automating the cluster 
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o Decreasing manual steps needed 
o Using AI optimization to improve the steps 
o Making the cluster user-friendly 

• Making requirements more detailed, specific and clear 

• Optimization viewpoints can be added or updated 

• Introducing Simulation as a service 
o at least for the dynamic optimization loop 

 

2.3 SCENARIO BASED SIMULATION 

 

 

Figure 7: Scenario-based simulation 

2.3.1 Purpose 

Scenarios are an essential part of the whole simulation engineering process. Due to the complex nature 
of Cyber-Physical Systems (CPS), scenarios are being used for simulation-based verification as a cost-
effective method. Scenario-based testing is already being used extensively in automated vehicles, 
especially in validating Automated Driving Systems (ADS). Tools and standards such as OpenScenario, 
OpenDrive and OpenCRG illustrate the effort in this direction. In the last few years, aviation has started 
using scenarios, and a few working groups are developing a standard scenario definition language for 
aviation. The scenario definition language (SDL) used by TUC is one such example.  

The scenario-based simulation (see Figure 7) cluster aims to demonstrate the efficiency of using 
scenarios in multiple domains of cyber-physical systems ranging from shop floor simulation to crane 
simulation. Scenario Definition Languages can also be used in conjunction with Domain-Specific 
Languages (DSL) and monitoring tools. The process of scenario development can be complex and time-
consuming. Using simple constructs to build and express ontologies, TUC aims that its SDL will help 
simplify the process of scenario development and make it accessible for different CPS to use scenarios 
for its safety assessment. The standard XML format supported by the tool allows sharing scenarios 
among the stakeholders, and with parsing, it can be used with other applications like simulator 
configuration. 
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2.3.2 How is this achieved 

At the heart of TUC’s Scenario Definition Language (SDL) lies ontology-based domain modelling. An 
ontology describes the concepts and relationships important in a particular domain in an easily 
understood manner while maintaining the ability to be machine interpretable. This bridges the gap 
between people and systems and can be used as a starting point for further development as a domain 
expands, or the ontology embraces new or additional concepts. 

TUC’s SDL uses a meta-model called System Entity Structures (SES). The SES is a formal ontology 
framework, axiomatically defined, to represent the elements of a system (or world) and their 
relationships hierarchically. SES uses four main elements and six axioms to model complex CPS in a 
simplified manner. The main idea when defining scenarios is to identify the environment (static and 
dynamic), events and simulation termination.   Once all possible scenarios are modelled in the SES 
domain model, selecting a particular scenario is defined by choosing a specific configuration through 
a process call pruning. This resultant structure is in the form of a decision free tree called a Pruned 
Entity Structure (PES). A PES represents a particular scenario in XML format that can configure a 
simulation and assess the system for safety. The following diagram in Figure 8 illustrates the workflow. 

 

Figure 8: Model verification workflow 

 

2.3.2.1 Interactions with Partner’s tools: TRUMPF  TUC  

TRUMPF uses a tool called simulation configurator, which will be executed by the machines during the 
simulation run. These xml files contain the number and routing of each single part through the 
production. Therefore, the products and all contained parts are configured within the configurator 
tool. Then the required number of parts is ordered and the machines for the single production steps 
are defined. The simulation software used is AnyLogic. TUC’s SDL will model the necessary 
configuration of the welding, bending and cutting machines as well as storage units and transportation 
options to be used in the simulation as well external factors such its interaction with other static 
components, and events that take place on the machines. THE SDL will load the configuration such as 
initial state of the machines and the static objects and will configure the timelines of different events 
affecting the state of the machines. 

2.3.2.2 Interactions with Partner’s tools: TUC  CEA 

There are two possible use cases where TUC and CEA will look to collaborate. 

Use case 1: Safe Drone Navigation  

The use case is about ensuring the safe navigation of a drone in a 3D space by tracking trajectories 
between waypoints computed by a motion planner (see Figure 9). A controller provides a sequence of 
control actions that regulate the state of the drone as a function of time. Given the next waypoint, the 
appropriate controller is used to track the reference trajectory.  

In the use case, we would like the drone to avoid deviating too much from the reference trajectory 
provided by the planner so that the drone is in a safe operating state. The added value is to provide 
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extra safety for drones operating in critical environments (like a hospital, a shared workspace with 
human). In that sense, we want to assess the safety and the performance of an advanced controller 
(ML-based) by measuring the cross-track error (CTE), i.e. the distance between the drone and the 
closest point in the path (between two known WPs). Figure 9, illustrates examples of drone navigation 
with advanced controllers, where the reference trajectory between waypoints (red) and the effect of 
an advanced controller in the drone’s position (blue) is plotted to have a graphical representation of 
the controller performance. 

 

Figure 9: Examples of Navigation with Advanced Controllers and their Deviation from the Reference 
Trajectory 

To assess the safety and performance of the drone, we would like to define a list of critical situations 
that cover some different drone missions (go home, go to next waypoint, land, go back to last good, 
hovering) in different critical conditions (battery checking, loss of signal from remote control, loss of 
GPS, object avoidance, payload checking, etc.). Table 1 shows a list of critical situations and possible 
critical conditions (not exhaustive) that we would like to describe in a standardized format. TUC’s SDL 
can help model all the situations involving different kinds of missions in form of scenarios. This will 
help in identifying critical scenarios using the combination of these drone missions. 

Table 1: Example of critical scenarios for drone safe navigation 

Mission Detailed description Critical conditions 

Go home, go to 
first waypoint 

Going to recorded position (mostly if GPS available) 

Battery Condition 
Remote controller lost 
GPS lost 
Object avoidance 

Payload checking ( + Camera 
function check, image 
quality check) 

Hovering 
Specify conditions to hovering for autonomous actions 
(only while trying to avoid critical condition)  then 
continue 

Battery condition, wind, 
… 

Land 
Immediate landing (in some systems with down 
camera) with exploring landing place. If lands, 
inform pilot by send email/SMS or if possibly make 

Camera lost, bad 
environmental 
conditions, GPS lost, … 
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journey to home position 

Land in 
designated 
places 

Defined places for landing, in critical territories to avoid 
safety 

Camera lost, Battery 
condition, object 
avoidance, GPS lost… 

 

Use case 2: Cooperative drone in a warehousing space  

Collaboration and mission planning in a heterogeneous environment involving multiple agents (robots 
or humans) present multiple challenges.  They are mainly due to the complexity of the system and the 
high heterogeneity introduced by different vendors and systems involved in a distributed manner. 
Warehousing deals with the arrangement and transportation of physical assets. When a business 
process involves multiple warehouses and multiple agents performing this mission, it requires that the 
agents communicate in the same and unambiguous terms, and the systems involved in the operations 
analysis also need to integrate this knowledge. Aided by ontologies and knowledge-based systems, we 
link system design to the mission and the ongoing operation in a multi-agent, multi-warehouse 
environment. The scenario consists of (at least 2) warehouses, robot arms picking the packages from 
the shelves, UAVs transporting them to a lift-up point, and drones transporting them to delivery points 
in the second warehouse. If a change in the mission conditions occurs (e.g. volume, weight or number 
of packages to be transported), we need to evaluate if the current set of agents is capable of 
accomplishing the mission, if new agents can be deployed compliant with the mission and whether the 
capabilities of the components and agents conform with the requirements of the mission. The above 
analysis permits to early determine possible conflicts of a system (in this case a Drone) being design, 
when deployed in the working ecosystem. Knowledge-based system design enforces correct-by-design 
models by analyzing the realized model and establishing consistency with the design constraints. These 
constraints can be extended by mission-specific conditions like the interaction with other agents, the 
abilities required, and safety requirements.  

Specifically, systems designed with UML / SysML are translated and mapped to standardized and 
recommended domain-specific ontologies to enable interaction and analysis. The intended analysis 
about consistency and capabilities are done using reasoners with different scopes: PDS Based (SPARQL, 
pattern latching) and OWL Based (DL-reasoners and SWRL). This analysis is returned as a feedback to 
the system designer so that: the compliance with the (selected) mission constraints is established, the 
conflicts are identified and explained, and alternatives (either to the design or the mission) are 
proposed so the designed system and the mission are consistent. This use case and tooling involves AI 
in two levels: at the level of the components of the systems and their correct integration into the 
systems via the capabilities and properties of the component, and the level of the analysis and 
reasoning about the successful integration of the system in the larger ecosystem. 

TUC’s scenario definition language as depicted in the following Figure 10 will bring together all the 
different models, whether mapped through system design languages like UML/SysML or official 
ontologies, under a common definition language. The SES in TUC’s SDL will define all the model’s 
characteristics, their interactions (with each other or other entities), and their associated constraints. 
Using the constraints and specific parameters, models can be configured and initialized using other 
tools or executed in a simulator like Papyrus. 
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Figure 10: Integration of System model into Scenario Definition Language and Scenario constraints. 

 

2.3.2.3 Interactions with Partner’s tools: TUC  Sherpa 

Sherpa Engineering provides a tool-based methodology for the design, the evaluation and the 
validation of cyber-physical systems (CPS). Our engineering offer is based on a software suite with: 

- PhiSystem: A UML/SysML based MBSE tool for CPS description (Requirement organization, 
System definition, Test definition and traceability). Scenarios are specified using UML 
sequence diagrams involving the system and its environment. 

- PhiSim: A Simulink based platform for CPS evaluation. PhiSim is a set of libraries of system level 
models which are specialized by applicative domain. The scenarios are defined giving a 
configuration to the system environments. 

Sherpa works with these tools in different domains. For automotive domain for example, a set of 
simulation models for autonomous vehicle, ADAS, powertrain, energy management for electric and 
hybrid vehicle are tested and can be used for the validation of the TUC and Sherpa collaboration 
workflow. 
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Figure 11: Integration and interaction of SEStools and PhiSystem. 

 

The collaboration between Sherpa and TUC is scenario based where TUC offers a formalized way for 
scenarios definition using SES (see Figure 11). Sherpa and TUC have two potential interactions: 

- At design level with an interaction between SysML and the SES meta-model/domain 
modelling. In this case we can extract specific system/domain characteristics from the 
description model and use then for the definition of high-level SES scenarios. 

- At simulation level where the scenarios defined with the SES tool can be used to configure the 
simulator. Once the SES scenario is integrated with the simulator, the simulation can be 
launched, results can be monitored and verified. 

In case SES is used at system level (SES/SysML interaction) and at simulation level (SES/Simulink 
interaction), the workflow permits also to validate the simulation model against the description model 
and then ensure their coherence, something very important in the design of cyber physical system. 

 

2.3.2.4 Interactions with Partner’s tools: TUC UGA  

UGA and INRIA propose to integrate the BIP toolset and Themis tool for modeling and monitoring a 
given system or protocol starting from scenarios generated by SEStools from TUC in order to ensure 
the correctness.   

The integration strategy proposed between DR-BIP and THEMIS is shown in Figure 12. Grey 
components designate input for the corresponding tools while orange components designate output 
usable by other tools. Purple components are library/code extensions to existing components for 
extending functionality to meet the integration goals. Two integration modes are possible: 

▪ Offline integration allows to use the output from one tool then transforms it to compatible 
input for another tool, tools are then run sequentially in a chain. UGA and INRIA already 
implemented trace converters that converts a DR-BIP trace output by a simulated system into 
a THEMIS trace that can be used for monitoring.  

▪ Online integration allows the program to interact directly with the running system to read or 
modify its state. Planned integration between UGA and INRIA allows monitors to observe the 
DR-BIP system state during simulation and act upon it to possibly correct its behavior. 



CPS Tool Best 
Practice Guide 

CPS4EU – PUBLIC 
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement 

No 826276 

 32/42     

 

 

 

Figure 12: Offline and online integration between DR-BIP and THEMIS tools  

 

In the case of WIKA use case, as shown in Figure 13, we integrate with SEStools from TUC to feed DR-
BIP specific scenarios. Starting from the scenarios generated by SEStools, DR-BIP can be used to specify 
high-level model scenarios for a given protocol and output useful traces that can be monitored and 
verified by THEMIS. Furthermore, since we are given multiple sensor data from WIKA and TUC drone(s), 
combined with generated trajectories from WIKA, there needs to be agreement between sensors 
which is not trivial in addition to computation to match trajectories, the protocol for agreement along 
with the threshold for errors can be modeled in DR-BIP after which it generates a trace that can be 
monitored by THEMIS. Optionally, partners can provide the traces immediately to THEMIS for 
monitoring in the case the traces are simple. THEMIS utilizes state-based decentralized information 
with discrete time, for each component a file must be provided where each line represents a 
timestamp, the line contains atomic propositions and their Boolean values at that time (e.g.: 
crane1_moving:t, crane2_moving:f, sensors_correlation_safe:t). Additional input to THEMIS can be 
provided in terms of sensors and thresholds when needed, as THEMIS has already been used to 
monitor smart apartments with various sensors. We note that possibly, input can be directly fed to 
THEMIS monitors by writing a custom “THEMIS Bootstrap” component and “Peripheries” which are 
input streams for monitors. 



CPS Tool Best 
Practice Guide 

CPS4EU – PUBLIC 
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement 

No 826276 

 33/42     

 

 

 

2.3.3 Recommendations, guidelines & best practices 

A strong collaboration is needed between the stakeholders during the initial stages. The partners must 
define possible scenarios for their particular use case, which must be decomposed and modelled using 
the SDL by TUC. The modelled domain of the scenarios needs to be parameterized, and appropriate 
configurations need to be discussed with the simulation expert. The pruned scenario has to be mapped 
with the simulation configuration. 

2.3.4 Risks and considerations 

- Needs strong time commitment upfront and exchange of information to model scenarios and 
their configurations 

- The scenario elicitation method is primarily knowledge-driven which relies on experts from a 
particular domain to provide input to the ontology. No data or subsequent analysis is used to 
assist this process. This might lead to gaps in knowledge. However this effect is not anticipated 
to be big for small sue cases. 

- Scenarios may not be directly mappable as configurations to simulators or other similar tools. 
Interface scripts might be needed to assist this process. 

- The tool does not have a big support community. TUC with other research groups need to 
handle possible bugs. 

2.3.5 Additionnal resources 

- Papers on SES [6] [7] [17] [18] [19] 
- Applications of TUC’s SDL in AVES flight simulator [8] and Aerial refueling [9] 

SEStools 

DR-BIP 

THEMIS 

Scenarios 

BIP Model Traces 
Simulation 

Figure 13:  SEStools, DR-BIP and THEMIS tools for modeling, simulating and monitoring WIKA protocols. 
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2.3.6 Future work 

- Work on scalability by building complex scenarios with partners 
- TUC’s SDL needs to be a part of a complete framework with support for multiple simulators 

and monitoring feedback. Can use other partners’ tool to complete this framework. 
Monitoring and feedback can lead to interesting applications later. 

- Automated integration of various simulators (Simulink, Phisim, Anylogic, Gazebo) with the 
tool. The tool should launch the simulator directly. 

2.4 MODELLING AND ANALYSIS OF AI-BASED SYSTEMS 

 

 

Figure 14: AI-Based CPS-Systems Toolchain 

2.4.1 Purpose  

This cluster focuses on the development of a toolchain to develop trustworthy AI-based systems. This 
is achieved thanks to the seamless integration of the tool’s services during the requirements elicitation, 
design, analysis and validation of the CPS, which considers AI-based pre-integrated components. AI 
technologies are also present in the integration and exchange process itself, by attaching unambiguous 
and well-established semantics to the data and services exchanged. The knowledge behind the 
integration is encoded into a machine-readable formalism (OWL) that permits its analysis via reasoning 
services, for example to check the consistency of the system. 

The AI-Based CPS-Systems Toolchain cluster mainly considers interaction between intra-CEA tools 
(Figure 14). Nevertheless, this interaction is tool agnostic (the elements, services and models 
exchanged follow high level specifications that the CEA tools implement) and can be extended to other 
partners tools since there exist compatibility and coherence between services/tools inside the CEA 
ecosystem and their counterparts in external partners: UML/SysML for system modeling, OWL/RDF for 
knowledge representation, MLX files for simulation, etc.  

Our objective is to define a methodology to support requirements elicitation, system design, analysis, 
and formal verification of AI-based systems, supported by an AI-driven approach.  

The intuition behind the approach is that each tool focuses on its intended task while enabling the 
results to be understood by other tools and actors. The purpose of the semantic integration using 
ontologies is to ensure coherence, propose relevant alternative models and reduce design and 
implementation time & costs.  

At the same time, we aim to expose all the above information to high level analysis via complex queries 
and reasoning. A more complete view and details on the cluster structure can be found in deliverable 
5.3. 
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2.4.2 How is this achieved 

In this cluster System Engineering, Safety Analysis, Formal Verification and Planning interact to deliver 
trustworthy AI-based systems. 

• Knowledge Driven Engineering provides the building blocks and the base 
functionality/services that a system possesses. The components in the system (included those 
carrying AI-based functions) define the system’s capabilities. In order to deliver trustworthy 
AI-systems, these capabilities need to be compliant with the constraints imposed by their 
intended usage. A system can be deployed in different environments and integrated in 
unforeseen ways with new pieces of technology. To ensure the integration is compatible and 
that the provided services and behavior of the system remain within acceptable parameters, 
it is required to automatically understand these capabilities and their requirements. By 
integrating knowledge in the engineering process in a standardized manner (knowledge based 
engineering), we expose the relevant capabilities, properties and parameters, so that other 
tools can provide their evaluation and analysis to assist and enhance the design process. This 
is achieved by the annotation of the entities in the UML design with the corresponding 
recommended domain specific vocabularies (ontologies). 

• Safety Analysis helps define safety objectives and requirements to design the AI based system. 
The safety objectives also serve to derive safety rules and constraints for run-time monitoring 
of the system in order to detect during the operational phase any deviation from normal 
behavior and apply necessary corrective actions. 
Planning is essential for CPS to fulfill their goals in open environments autonomously. Planning 
is the activity of producing a plan of actions to reach a goal from an initial state using a given 
declarative domain model, which describes the system, the objects it can interact with, the 
system's possible actions and the associated constraints. The model-based representations 
make planning systems transparent, i.e., the process by which the decisions are made can be 
understood by human designers. Hence planners have the potential to contribute to achieve 
explainable and trusted decision-making for autonomous CPS. 

• Verification of NN properties covers global verification (so called formal verification of 
properties) as well as local property verification, otherwise known as property-based testing, 
where tests are generated automatically according to properties about the domain of 
applications. This two-pronged approach, which has been demonstrating its effectiveness in 
“traditional” (i.e., non-AI) software for decades, remains relevant for the paradigm shift 
brought by NN. 

2.4.3 Recommendations, guidelines & best practices 

2.4.3.1 Knowledge driven engineering 

In order to seamlessly integrate the tools, it is required that they speak the same language and in the 
same terms, i.e. shared semantics. To unambiguously identify a component in a knowledge base and 
elicitate its properties, first it is necessary to have clearly defined the context, a viewpoint and the 
objectives of the system being designed. The final properties of an AI-pre-integrated component , for 
example a face recognition device, will depend on the input sensors (camera resolution, frame rate, 
NN accuracy, nominal conditions, etc.) which are logical properties of the camera, as opposed to the 
weight, volume, and current necessary, which are at the mechanical and electrical level. Likewise the 
considerations for an acceptable & optimal device integration and deployment environment, depend 
on the mission of the system and the environment where it is being deployed. Once the components 
required to interact within the system, their properties and the viewpoint of interest are defined, we 
can proceed to apply the proposed toolchain.  

The context, viewpoint along with the systems purpose, which determine the necessary and sufficient 
concepts to consider, i.e. the ontologies, which in turn will define the underlying vocabulary. The 
reasoning based analysis (i.e. consistency among the tools impact on the system) is made in the form 
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of rules and queries that depend on this terminology. Because of the central role of this vocabulary, it 
is highly recommended that the core vocabulary comes from already established sources, and 
extended on top of them. 

As best practices and recommendations, tools that integrate knowledge based functions, should 
provide base languages and/or mechanisms to integrate external selected languages. In the case of 
CPS, we aim to provide the basis and recommended terminology for autonomous and semi-
autonomous systems that compose CPSs, as well as the shortcomings and needs of the available ones. 
To support the analysis and selection of the ontological resources, a set of vocabularies, catalogues, 
ontologies and data-models relevant to CPS and (semi) autonomous systems is provided in the 
resources section.    

A demonstrator on how to integrate domain specific knowledge in the cluster toolchain, is currently 
on progress guided by the following methodology: 

• Provide the system model in UML (other modeling formalisms are subject to the same 
process). 

• Translate/annotate the model (a view of the model) mapping UML concepts into a 
compatible and relevant ontology in OWL. By compatible, we refer to an ontology that 
refers to the type of system we model (e.g. drone) and by relevant we mean the ontology 
should consider the viewpoint we want to analyze (e.g. mechanical viewpoint, electrical 
viewpoint, logical viewpoint, etc.) 

• Expose the translated/annotated model to a common ecosystem, in the form of OWL 
ontologies, where the other tools can get access to it. 

• Analyze the results by importing the translated/annotated model into the required tools 
format. 

• Recover/extract the results made by the analysis tools into the common ecosystem. 

• Provide feedback to the designer. 

2.4.3.2 Safety Analysis 

Several AI related characteristics may impact the trustworthiness of an autonomous systems with the 
introduction of new risks into the system - with both, negative or positive outcomes – or increase their 
likelihood due to specific characteristics of the technology. These new risks require specific focus and 
additional guidance through a novel risk management framework and process. We are developing a 
risk based approach in order to identify and to assess risks to which such systems may be exposed and 
derive appropriate safety principles and mitigation measures. The approach focus on the design-stage 
of the CPS development through the following activities: 

• Operational Design Domain (ODD) definition to serve for Risk Assessment in order to address 
the lack of specification of AI application. 

• Identification of critical scenarios to address the SOTIF related risks and cyberattacks. 

• Risk quantification and criticality analysis enable to deal with the evaluation metrics for 
autonomous functions and uncertainty that may entail the operational contexts and the AI 
models. 

The purpose of the ODD definition is to serve as input for building the catalog of situation in which the 
system can operate for the hazard analysis.  We aim to use the knowledge of experts through 
ontologies to ensure that we cover all scenarios for which a system is designed to operate properly. 
For the representation of the scenario-space of a specific autonomous system, i.e. the ODD, we must 
select in the ontology the parameters relevant to the system functionality and envisaged context and 
apply boundaries to them to take into account the operating limitations. The ODD will be used to 
define a situation catalog for the system. The ODD will also serve to derive 1/ safety requirements on 
the architecture model of the system, based on the operating limitations identified;  and 2/ safety 
constraints (including safety variables) needed to monitor the system at runtime - so that  to avoid the 
system to exit the ODD.   
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In addition to the ODD-based situation catalog, the hazard analysis requires to identify the conditions 
that will lead, if occurring in the operational situation, to an accident. For classical systems, such 
conditions are predefined in some hazard list and that are essentially based on known HW/SW failure. 
For the AI-based systems, we must consider also as initiating condition, any functional insufficiency, or 
human misuse to cope with the potential autonomous functions weaknesses. To do so, we are 
developing a systematic approach for deriving critical scenarios based on adapted FMEA, STPA, HAZOP 
guidewords, extended with some specific guidewords propose by the SOTIF to handle the potential 
human misuses. The guidewords must be applied at vehicle level (vehicle level functionality) but also 
at functional component level (e.g. perception, navigation, etc.) to derive as complete as possible the 
critical scenarios. 

For classical systems, the risk is quantified based on the exposure of the events in the accident scenario 
and the severity of the resulting consequences. In addition, the human involved in the system 
environment can low the risk based on their intervention. For some AI-based systems, there may not 
be a human-in-the loop, and we have to take into account other parameters that may impact the 
negative outcome occurrences and their severity. Some of these factors are time-dependent and 
context-dependent. To do so, we use accident/pre-crash prediction analysis. The prediction model is 
based on a causal analysis including common cause and common failure analysis represented as a 
directed acyclic graph (following a STPA/FTA like approach) to infer the future states of the system and 
its environment until accident happens.  The nodes of the graph represent the events (identified as 
the initiating conditions in the critical scenarios) that can modify the state of  the context and system. 

The overall analysis will help classify and prioritize the critical scenarios and determine when one need 
to define mitigation measures. Those mitigation measures may be four-fold: design-based, fail-
operational, fail-safe or informative (i.e. with no impact on the development process). Some measures 
are also the input to derive the safety constraints and safety variables to deal with at runtime. 

Future work is to take into account the uncertainty in the approach.  

2.4.3.3 Planning 

Another contribution is the extension of the existing CEA technology for model-based engineering of 
robot software systems, Papyrus for Robotics (P4R), in order to enable modeling and (semi-)automated 
synthesis of AI planning in robotic architecture solutions. 

The contribution is organized in two parts. First, we extend P4R (Papyrus for Robotics) to integrate 
PDDL-based planning and reactive and fault-tolerant task execution into deployed ROS2 solutions 
based on Plansys21, BehaviorTree.CPP2 and other supporting technologies. We develop dedicated 
modules for code-generation from P4R models to enable (i) the automated creation and run-time 
update of behavior trees to implement PDDL plans, and (ii) the implementation of run-time monitors 
and recovery strategies to deal with adverse and/or unspecified situations in operation through 
observation of the system and its environment. 

Second, we provide P4R with dedicated modules to support the specification and the verification of 
PDDL models by non-experts in AI-Planning. This work includes the definition of a DSL which hides the 
complexity of PDDL definitions and raises the abstraction of planning specifications, from which PDDL 
models (domain and problem models) can be generated. It also includes the exploration of new ways 
to integrate the formal specification of behavior requirements (safety, resource utilization, etc.) with 
PDDL (domain) models to enable their verification. 

2.4.3.4 NN Verification 

The ISAIEH tool (description provided in D5.3) was mainly aimed at bridging the gap between the NN 
world (through the handling of standard formats such as ONNX and NNnet) and the formal methods 

 

1 https://intelligentroboticslab.gsyc.urjc.es/ros2_planning_system.github.io/index.html 
2 https://www.behaviortree.dev/ 
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world (by targeting formats such as SMT-Lib), hence the name (Inter-Standard AI Encoding Hub). The 
natural evolution of this line of work is to reinforce this connection with numerous plugins, covering 
different aspects of property verification, as well as clever heuristics to guide the various tools used 
for this analysis. This next step has been undertaken, partly in the context of CPS4EU, with the 
development of the CAISAR (Certifying AI Safety And Robustness) platform, for which ISAIEH served as 
the first step (offering the internal representation of AI, parsing features, etc), making it one of  the 
main plugins of the CAISAR platform.  

Other plugins are already added to this platform, but they represent only a part of the planned 
integrations to CAISAR, which will span over the upcoming years. These integrations aim at the long-
term goal of CAISAR which is to cover verification aspects (both global and local) aided by clever guiding 
heuristics like the CEA developed DISCO (for Dividing Input Space into Convex polytops, which was the 
subject of a publication currently under review in FM2021), as well as other useful features (e.g., 
explainability, feature extraction, visualisation). Some of the plugins already integrated in CAISAR are 
external to CEA (such as Marabou) but some of them include CEA tools such as PyRAT.  

As its name implies, PyRAT (for Python Reachability Analysis Tool) applied to NN is focused on the 
robustness properties, both in the context of malicious attacks (i.e. adversarial) and in the context of 
nominal conditions (where the properties to verify would be, for example, resilience to perturbation 
in sensory inputs).  

The integration of other plugins is currently taking place on the CAISAR platform (Eran, NNenum, etc). 
Here again, some of these plugins are developed at CEA, such as AIMOS, AI Metamorphism Observing 
Software, which applies metamorphic testing —a kind of property-based testing— to blackbox AI. The 
ColibriCS and Colibri2 solvers that are currently linked to ISAIEH (see Figure 1) are also projected to be 
included in the CAISAR platform. These tools can not only serve to prove properties about AI, but 
ColibriCS (for Colibri Certified Solver) can also provide a particular solution that is conspicuously lacking 
in the state-of-the-art regarding the safety of symbolic AI. Indeed, many critical systems use constraint 
programming, a type of symbolic AI, in their applications, and the need for safety insurance in these 
domains is no less paramount than for NN. ColibriCS answers this need by offering a set of individually 
verified solver bricks that can be combined together to form a solver that is tailor-made to the needs 
of a particular user. 

The ultimate goal for CAISAR is to be released as an open-source platform (the administrative steps 
towards this goal are well underway) in order to encourage development and collaboration with 
exterior partners. 

2.4.4 Risks and considerations  

Special care has to be taken into the correspondence between a meta-model (UML) and a KB. The 
intended meaning (semantics) provided by the KB might not be fully aligned with the underlying meta-
model. This specification has to be detailed and documented to avoid confusion and eliminate 
ambiguity. UML instances (e.g. of a class) might need to be classes in the OWL format, and associations 
might need to be specified as roles at the right level. Mismatches between these abstractions levels 
would risk the successful integration of the toolchain. 

As already mentioned, the viewpoint is especially important. The integration assumes there is an entity 
(e.g. the system) for which several tools exist to handle specific aspects of its design, evaluation, 
deployment, etc. But the viewpoint can change the relations between these items, and this should be 
clear to other tools, services and actors outside the current tool. Take as an example a drone 
mechanical and logical viewpoint: in the mechanical perspective the Autopilot as well as the Motor as 
mounted in the drone’s Body, and the Propeller is mounted in the Motor, whereas in the electrical 
view the Motor is connected to the Autopilot, and the Propeller is not in the view. Nevertheless, the 
energy that is output to the Motor, depends on the Propeller installed. To overcome this mismatch, all 
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concepts and relations must be properly described (with an rdf:comment tag or similar resource) and 
a complete catalogue must be accessible. 

2.4.5 Additional resources  

Regarding ontologies and knowledge based systems for autonomous systems, robotics and Industry 
4.0, we have found especially relevant two recent surveys that provide guidance, approaches and 
resources to enable KR integration and its application in different disciplines and scenarios: 

• 2019 survey regarding ontology based approaches to robot autonomy [1]: 
http://www.iri.upc.edu/files/scidoc/2257-A-review-and-comparison-of-ontology-based-
approaches-to-robot-autonomy.pdf 

• A 2021 survey on KR systems applied to robotics [2], with an emphasis in robot interaction with 
humans. The authors focus on applications and social roles of robots (in domestic, health and 
industrial activities). This survey complements the above mentioned survey, and is also a 
valuable resource and guide to KRs systems in industry, their implementation, scope and limits. 
https://www.mdpi.com/2076-3417/11/10/4324 

2.4.6 Future work 

In this section, we present some foreseen steps that came out of the analysis done in this section, but 
remain out of the scope of the current work: 

• Integration with external KBs 

• NLP based approaches can be built on top / NER (Named Entity Recognition). 

• Annotation of object recognition can serve from the identified KBs/Ontologies. 

• Machine learning algorithms to provide recommendations and patterns, that can be re-used 
in future projects. 

• Other modeling environment can be used to implement the safety analysis approach.  

• Publications of the approach to integrate knowledge into the design and the enabling of the 
interaction among the tools, is envisaged as the pieces are successfully coupled. 

http://www.iri.upc.edu/files/scidoc/2257-A-review-and-comparison-of-ontology-based-approaches-to-robot-autonomy.pdf
http://www.iri.upc.edu/files/scidoc/2257-A-review-and-comparison-of-ontology-based-approaches-to-robot-autonomy.pdf
https://www.mdpi.com/2076-3417/11/10/4324
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3 CONCLUSION 

In the previous deliverable (D5.3), the intended interaction of the tools are solely based on the 
targeted domains of the individual tools and the specified exchange formats and interfaces. In this 
deliverable, we have further specified this interaction by refining the toolchains, defining and 
identifying the functions and processes that are more compatible, and establishing, where possible, 
the risks, recommendations and limits to render this integration successful.   

In the case of AI-Based CPS-Systems tool-chain, we have provided further details on the interaction of 
knowledge driven engineering, safety analysis, planning and NN verification tools. These descriptions 
provide insight on the process inside each tool, their capabilities, their outcomes and further 
development. The descriptions have been made considering the intended and potential interactions 
between the tools. We provided means (technology bricks and resources) to realize these interactions 
as well as the specific aspects of each tool’s functions, which can be consumed by the other elements 
in the toolchain. As such, these specifications should be regarded as guidelines for the application of a 
toolchain integrating knowledge based engineering, safety analysis, planning and verification of NN 
properties. 

In the same line of thought the heterogeneous co-simulation cluster, the generation of simulation 
components using different tools and methodologies has been described. This distributed co-
simulation can be used to validate Cyber-Physical Systems, allowing a rapid prototyping, software-in-
the-loop (SiL) and hardware-in-the-loop (HiL) techniques. 

This cluster defines the use of the HLA standard to coordinate the simulation components in a 
distributed simulation. Each of the generated components will simulate a specific characteristic, which 
together form a complex simulation (interoperability). Additionally, once a simulation component is 
designed, it can be reused for other simulations, reducing development time (reusability).  

Because these simulation components are very complex, the user guide presented in this document 
can be a reference for future implementations, including recommendations for the pre-integration of 
the generated models from different modelling tools and some considerations and risks. 

In the next stages of the project, the development of demonstrators to showcase these tools chains, 
and that further refine these recommendations and materialize the specifications are envisaged.  
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