

Project number: 826276

CPS4EU
Cyber Physical Systems for Europe

D2.5 Simulation tools and experimental
platforms - v1

Reviewer (name – company): A; Dupret (CEA)

Dissemination level: Public

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 2/27

Version Date Author (name – company) Comments

V1.0 2020/11/30

Julien Schmitt (VSORA)

Benjamin Candillon (VSORA)

Minh-Thuyen Thi (CEA)

Siwar Ben Hadj Said (CEA)

Michael Boc (CEA)

Jean-Baptiste Doré (CEA)

Nicola di Pietro (CEA)

Florian Greff (Thales TRT)

Guillaume Vivier (Sequans)

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 3/27

EXECUTIVE SUMMARY

This document is the first report of task 2.3 of the work package 2 (WP2).

WP2 deals with the communication aspects in cyber physical systems (CPS). Task 2.3 deals more specifically with
prototyping of solutions envisaged in the two other tasks. In the first deliverable (D2.1) we presented
requirements from other packages (in particular WP6 and WP7) and exposed two main axes of development.
The first one consists of a communication system relying on existing technologies: the challenge here is to
integrate within a board various communication protocols like 4G communication (LTE), Wi-Fi, Bluetooth,
Ethernet. This aggregation is done via the PIARCH board presented in this document.

The second axis of development explores new technologies centred on the 5G standard and its evolution, with a
particular interest in the ultra-reliable and low-latency communication (URLLC) feature introduced by this norm.
This implies new algorithms for signal synchronization and new solutions for the network-level issues: deliverable
D2.3 presents the innovative solutions for CPS communication modules and networking developed by WP2 of
CPS4EU.

Regarding the signal processing aspect, the study carried out in Task 2.2 led to the design of a MIMO system
using energy detectors for millimeter Wave applications. This module implements advanced signal processing
algorithms by using neural networks as well. In the context of Task 2.3, we propose to continue this study until
the implementation on a real target: this phase of the development in a commercial project is challenging since
new issues like the computation capacity of the real target, the quantization of data and the management of the
memory could lead to major modifications in the original algorithm. The communication between different
teams working on the project (the DSP team and the implementation team) generates a cycle of development
converging to a satisfying solution but this increases the time to market. In the framework of Task 2.3, we are
exploring a new way of development where DSP engineers can determine at early stage of development their
computing and memory requirements and study the impact of the quantization. Finally, we will run the
simulations on a remote FPGA using a new cloud computing offer.

To achieve very low latency, the network is also a key component: we present here the results and the validation
process to implement the IEEE Ethernet Time Sensitive Networking (TSN), in particular, the norm IEEE 802.1AS.

The present document is a first release exposing the issues and the protocol of validation on experimental
platforms. Preliminary results are also presented but they will be completed in the final version of the document
at the end of the CPS4EU project.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 4/27

Table of content

Executive summary ... 3

1. Introduction .. 5

1.1. Purpose ... 5

1.2. Definition, acronyms, and abbreviations ... 6

1.3. List of Figures ... 7

2. Existing technologies (LTE / Wi-Fi / BT) .. 8

2.1. Purpose ... 8

2.2. Technical objectives ... 9

2.3. Hardware ... 9

2.3.1. LTE module .. 9

2.3.2. Base station ... 11

2.3.3. Host ... 11

2.3.4. SIM cards ... 12

2.3.5. Remote PC ... 12

2.4. Technical achievements ... 12

3. Simulation of a MIMO decoder on a DSP model ... 13

3.1. Presentation of the project... 13

3.2. Test bench description ... 14

3.3. VSORA DSP Architecture... 15

3.4. Simulation platforms .. 17

3.5. Remote FPGA infrastructure ... 19

3.6. Experimental results... 21

4. Ethernet TSN Testbed for Time Synchronization with SDN-based Management 22

4.1. Ethernet TSN Testbed for Time Synchronization with SDN-based Management 22

4.2. Ethernet TSN Testbed for Time Synchronization ... 22

4.3. References ... 26

5. Conclusion .. 27

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 5/27

1. INTRODUCTION

1.1. Purpose

The purpose of this document is to present the validation process of the achievements of WP2, which
aims to define the communication modules needed for the next generations of Cyber Physical Systems. The first
step of the project was an analysis of the requirements coming from verticals. As described in the first deliverable
D2.1 “Specification and architecture of the communications modules”, we identified two main families of
modules for CPSs: the first one is based on existing technologies; the second one consists of algorithmic and
networking solutions that go beyond the state of the art, devised because of the limitations of the first family.

The first family of communication modules that we identified in WP2, is based on well-known
technologies: Wi-Fi, Bluetooth, Ethernet, high-performance LTE (cat 4), low-power LTE (Cat M1, Cat NB1). The
work presented in D2.1 highlighted the need of a pre-integrated platform: not all requirements (in terms of
communication capability, power consumption, security, interfaces …) can be met in a single solution. The
platform PIARCH developed in WP6 will use modules from 4G modems. The validation of the system will be done
within this group (WP6) and we present here only the board and the preliminary test and validation.

The weak point of the 4G technology integrated in the PIARCH board, is the latency and the reliability
of the communication at least for the most extreme use cases of CPS. This point is addressed in a new wave
form: the 5G technology.

 The 5G technology is proposed by the 3GPP consortium and targets to improve three features:

• Enhance the mobile broadband with peak speed up to 20 Gbps

• Address the IOT devices

• Introduce the Ultra Reliable & Low Latency Communication feature (URLLC)

In the context of the CPS4EU project, we are focusing especially on the last point. In this document, we will not
discuss about URLLC-enabling algorithms: the solutions developed by CPS4EU are described in D2.3: “Proposition
for 5G, including URLLC evolution” and will be further discussed in D2.4. Here, we will focus on the simulation
process and describe how we can simulate some selected innovative solutions on a real DSP. This simulation will
be done on different platforms and finally we will run the simulation using a DSP mapped on remote FPGAs.

Moreover, in the complete chain of transmission, efficient networking is also a key factor to meet the latency

requirements. In the work of WP2, we address this point by implementing the IEEE time-sensitive networking

recommendations, and in particular the norm IEEE 802.1AS. We will present in this report preliminary results

about this implementation.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 6/27

1.2. Definition, acronyms, and abbreviations

Acronym /
abbreviation

Description

3GPP 3rd Generation Partnership Project

AI Aritificial Intelligence

AGU Address Generator Unit

ALU Arithmetic and Logic Unit

API Application Programming Interface

AWS Amazon Web Service

BMCA Best Master Clock Controller

CPS Cyber-Physical System

CPU Central Processor Unit

CUC Centralized User Configuration

DMA Direct Memory Access

DSP Digital Signal Processor

FPGA Field Programmable Gate Array

GCC GNU Compiler Colection

GM Grand Master

IMSI International Mobile Subscriber Identity

LTE Long Term Evolution

LTE – M Long Term Evolution – Machine Type Communication
MIMO Multiple Inputs Multiples Outputs

MTC Machine Type Communication

PReLU Parametric Rectified Linear Unit

PCI Peripheral Component Interconnect

PCIe PCI express

PPP Point-to-Point Protocol

PIARCH Pre-Integrated Architectures

ReLU Rectified Linear Unit

RTL Register Transfer Level

SDN Software-Designed Networking

SIMD Single Instruction Multiple Data

SSH Secure Shell

TCM Tightly Coupled Memory

TLM Transfer Level Model

TS Time Synchronization

TSN Time Sensitive Networking

UART Universal Asynchronous Receiver Transmitter

URLLC Ultra-Reliable & Low Latency Communication

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 7/27

1.3. List of Figures

Figure 1 - Safe and secure remote monitoring and maintenance use case.. 8

Figure 2 - WP2 module integration in WP6 and WP7 ... 9

Figure 3 - Monarch GM01Q module .. 10

Figure 4 - Several derivative of boards based on Monarch solution .. 10

Figure 5 - AMARI Callbox Classic base station .. 11

Figure 6 - NXP MCIMX8M-EVKB board and Sequans Monarch GM01Q_EVK connectivity module 11

Figure 7 - Whole neural network system simulation .. 13

Figure 8 - Illustration of the test bench .. 15

Figure 9 - VSORA's DSP architecture .. 16

Figure 10 - VSORA’s DSP Compilation flow .. 17

Figure 11 - Native simulation... 17

Figure 12 - High level simulation ... 18

Figure 13 - FPGA simulation .. 19

Figure 14 - Remote FPGA infrastructure .. 20

Figure 15 - General architecture of the testbed ... 23

Figure 16 - Switch and endnodes' network card... 24

Figure 17 - Testbed setup .. 24

Figure 18 - Time offset between GM’s clock and other clocks in scenario of connecting new device 25

Figure 19 - Time offset in the scenario of changing GM ... 26

file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674477
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674479
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674480
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674481
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674482
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674483
file:///D:/BACKUP/ProjetsCollaboratifs/2019%20CPS4EU/WP2/_deliverables/D2.5/CPS4EU_D2.5%20-%20Simulation%20tools%20and%20experimental%20platform%20_%20v1.docx%23_Toc60674484

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 8/27

2. EXISTING TECHNOLOGIES (LTE / WI-FI / BT)

2.1. Purpose

The goal of this validation platform is to provide a preliminary proof of concept of the integration, configuration
and usage of the connectivity module from WP2, which provides LTE connectivity. This work can then be
leveraged in the development of the Secure CPS-to-X Connectivity Pre-Integrated Architecture (SC2XC PIARCH)
in WP6, and of use cases (namely WP7).

To give a better idea of the context, Figure 1 shows our reference use case, which will make use of the
connectivity module. In this use case, we want to use it to enable remote monitoring and maintenance of a
connected and possibly autonomous vehicle, from the cloud. More precisely, it will be used by a secure gateway,
at the edge of the vehicle, to periodically send Health and Usage Monitoring System data from the vehicle to the
cloud, and occasionally receive Over-The-Air updates from the cloud. Additional protocols such as Bundle
Protocol (IRTF DTN Research Group, 2007) will be used to enable disruption-tolerant communications, but this
is out of the scope of WP2.

Figure 1 - Safe and secure remote monitoring and maintenance use case

In WP2, we study how we can make use of the connectivity module to send data from a Linux application but
also from a microcontroller, to a PC located in a remote network. We also study the configuration and integration
possibilities to enable different use cases, in terms of energy consumption, application development, security,
and so on.

The knowledge gathered from this work is transferred to WP6 and leveraged in the development of the SC2XC
PIARCH. This PIARCH contains all the support to build a secure gateway subsystem for a target use case. It
provides LTE, Wi-Fi, Bluetooth/Bluetooth Low Energy and TSN (Time-Sensitive Networking) connectivity.
Regarding the connectivity module, it basically consists in “packaging” it to ease its integration and usage, i.e. to
facilitate the reproduction of what has been achieved in WP2.

The SC2XC PIARCH will then be used to build the “Safe and secure remote monitoring and maintenance”
automotive use case in WP7, as explained above (Figure 1). The PIARCH also enables the use of the connectivity
module in other use cases in and beyond CPS4EU.

This is how we aim to transfer WP2 knowledge and components all the way up to use cases and partners projects,
as depicted in Figure 2.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 9/27

Figure 2 - WP2 module integration in WP6 and WP7

2.2. Technical objectives

The current goal of this validation platform is to experiment and validate the following:

- Configuring the base station and registering the module to the network,

- Sending and receiving data from Linux and, in the future, from a low-power microcontroller,

- Forwarding data from the base station to a core IP network,

- Handling various possible errors, for example when the module has to be reset,

- Configuring the module and base station to make use of LTE-M (LTE Cat-M1) or NB-IoT (LTE-NB1)

technologies, depending on the use case,

- Making use of deep sleep mode to reduce power consumption.

Security is not part of the current study, as it is handled by the PIARCH itself, via the use of a Trusted Execution
Environment to perform cyber-critical operations.

2.3. Hardware

2.3.1. LTE module

The LTE modem is developed by Sequans. For the pre-integration of PIARCH, it was decided to adapt an existing
module, developing some specific feature to the CPS, and to support integration activity. It was decided to
consider the Monarch family for the low-end communication requirements (cat-M or NB-IoT).

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 10/27

Monarch is a single-chip LTE Cat M1/NB1 solution designed specifically for narrowband IoT applications, including
sensors, wearables, and other low data, low power M2M and IoT devices. Monarch complies with the ultra-low-
power and reduced complexity feature requirements of the 3GPP mMTC, defining narrow-band, low data rate
LTE technology for machine-type-communications (MTC). Monarch achieves a very high level of integration
whereby baseband, RF transceiver, power management, and RAM memory are integrated into a tiny 6.5 x 8.5
mm package, running Sequans carrier-proven LTE protocol stack, an OMA lightweight M2M (LWM2M) client for
over-the-air device management, and a rich set of AT commands.

The Monarch module is a hardware module that can be integrated directly to a customer board. It has been
certified in all major operators in the world and supports 17 bands in a single sku.

Figure 3 - Monarch GM01Q module

Since in CPS4EU project, the pre-integrated architecture board is based on a on-the-shelf evaluation board from
NXP (NXP I.MX 8M), no specific HW design was foreseen. Therefore, it was decided to move forward with a
Monarch evaluation board.

Indeed, there are various derivative of boards build on the Monarch module. Evaluation kits, or extension boards
on commonly used MCU. One can mention

• GM01Q-STMOD expansion board for plug-and-play use on STM32 discovery kits

• Nimbelink evaluation kit

• Skyworks integrated SIP (for an even more thin Monarch based module)

For STMOD extension

EVK for Monarch-SIP

Nimbelink EVK

Figure 4 - Several derivative of boards based on Monarch solution

For CPS4EU we considered Nimbelink based EVK, which offers easy control and debug through two separated
USB ports, as well as possible integration with Arduino or Raspberry boards.

Continuous improvements of the performance of the module are being done by Sequans, with a particular
attention given to power consumption, radio performance, security and reliability, as well as end user ease of
use. With that respect, we started to conceive a unified environment that would allow fast replacement of
Sequans module, for instance from a cat-M to an NB-IoT one, or even to support a cat-4 or cat-6 module. This
would then perfectly fit to the concept of pre-integrated architecture for which pre-integration of various modem
category can be done.

More practically, to support the integration into the PARCH, we also generated various documentations.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 11/27

2.3.2. Base station

We use an AMARI OTS 100 (now AMARI Callbox Classic, Figure 5) base station from the French company
Amarisoft (https://www.amarisoft.com/, s.d.). It acts as a 3GPP compliant eNB (base station) and EPC, allowing
functional and performance testing of LTE (up to Cat. 10), LTE-M and NB-IoT connectivity.

Figure 5 - AMARI Callbox Classic base station

2.3.3. Host

As explained above, we are currently focused on making use of the connectivity module from a Linux host. We
use the same board as the one used in WP6, i.e. an NXP i.MX8M-based board. This host is connected to the
module’s UART via USB (Figure 6). We use this board for the sake of consistency; however, any Linux host could
be used to conduct the experiments.

Figure 6 - NXP MCIMX8M-EVKB board and Sequans Monarch GM01Q_EVK connectivity module

In the future, we aim to enable the use of a low-power microcontroller (with another OS such as Zephyr
(https://www.zephyrproject.org/, s.d.)) for when energy consumption is at stake. The i.MX8M System-on-Chip
provides us with such a microcontroller (ARM Cortex-M4F).

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 12/27

2.3.4. SIM cards

We use configurable SIM cards (USIMs) from the French company Open Cells Project (https://open-cells.com/,
s.d.).

2.3.5. Remote PC

This element is normal PC located in the same IP network as the base station. It is used to perform end-to-end
communications between the LTE module and a remote IP network / cloud.

2.4. Technical achievements

We have managed so far to register the module to the LTE network, use various AT commands to configure it
and send data, as well as mounting an IP interface in Linux to send data via Point-to-Point Protocol (PPP) over
UART. This is an overview of the current process:

a. USIMs configuration

Open Cells Project provides a tool to configure the USIMs. We set their operator code to <opc> and their
authentication key (Ki) to <key>. We will also use their International Mobile Subscriber Identity (IMSI).

b. Base station configuration

We configure the Amarisoft base station database to accept the target USIM. We provide the authentication
algorithm (milenage), IMSI, <key> and <opc>.

c. AT commands from the host

We use the module UART to connect to it from the host and send AT commands. Various AT commands can be
used to check the USIM PIN code, put it in airplane mode, enable multi-sim support, and so on. Once the module
is ready to connect to the network, we use the following AT command to enable full functionality and try to
register to the network:

AT+CFUN=1

Then, we can use the following AT command to check the registration status:

AT+CEREG?

This command must return 1 if we are correctly registered to the home network, or 5 if we are registered in
roaming mode. In the case the Mobile Country Code (MCC) and Mobile Network Code (MNC) of the IMSI do not
match those of the base station, the module will be registered in roaming mode.

d. Sending data

The module provides TCP/UDP/IP, HTTP(S), FTP, TFTP, MQTT stacks and more, in order to send and fetch data
thanks to AT commands. Details on how to make use of these commands are given in the module documentation.

We are also able to mount a Linux IP interface using Point-to-Point Protocol (PPP) over UART. In order to do so,
pppd (PPP daemon) and chatscript utilities must be installed on the host. The PPP options and chatscripts files
(connect and disconnect) must be sent accordingly to the use case. We then run the PPP daemon, pppd, in order
to mount the ppp0 interface. This interface can then be used to freely communicate with the base station. Again,
more details on this process are given in the module documentation.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 13/27

3. SIMULATION OF A MIMO DECODER ON A DSP MODEL

3.1. Presentation of the project

In this section, we will present some initial details and the main features of our testbed implementation of the
MIMO decoder for sub-THz xHauling developed in the framework of Task 2.2. The final and detailed results
obtained through this experimentation will be reported in D2.6 at the end of the project’s lifetime. A full
description of the considered MIMO communication problem and the corresponding MIMO signal decoding
system are described in D2.3. For the purpose of this document, we just need to know that this system involves
an Artificial Intelligence processing. We will focus here on the simulation tools exploited to evaluate the system
on a realistic implementation and we will describe the different validation platforms (from native processing to
an implementation on a remote FPGA).

We assume that the neural network is trained before implementation and we consider only the inference part
of the system. This includes a description of the different layers of the neural network and the weights associated
to each layer.

To simulate this application, we have to build a whole project composed of 3 distinct blocks represented in the
diagram below:

• An application – blue part

• A system – orange part

• A test bench – green part

In some cases, the system regrouping the application and the interfaces are not separated. These blocks can be
described in different languages (matlab, python, C++, tensorflow, etc …)

Application

The application is the description of the different layers composing the neural network. This is generally
expressed in a framework dedicated to AI like Keras, tensorFlow or Caffe. Using these frameworks, we have
generally also the weights (coefficients computed by the training process) which belong in the previous diagram
to the interface level. This description can be executed with all kinds of layers (convolution2d, fully connected,
matmul, various activation functions (ReLU, ReLU6, PReLU, sigmoid) …).

The description of the layers can also be expressed using VSORA’s library. This C++ library contains the most used
layers in various public projects (among supported project by VSORA, we can mention imageNet (image
classification), YOLO (objects detection), DeepSpeech (speech recognition)).

The use of VSORA’s inference library is mandatory to compile the application on a VSORA’s DSP. Nevertheless,
we do not have to write the code in C++ using this library: as mentioned previously, most projects are written
within a framework. VSORA developed a compiler (called “graph compiler”) which accepts an entry point
expressed with these languages and transforms it into a code using the VSORA’s API. In the CPS4EU project
context, the framework used is tensorFlow and the entry points are called “pb-files”.

The graph compiler is not just a translator from one language (here the tensorFlow language) to C++ (with the
inference library). Its separates also the weights included in the pb files from the layers description. In some
cases, it can also move or merge some layers to take the full benefit of the target.

APPLICATION
INPUTS

GENERATOR
Interfaces

OUTPUTS

COMPARATOR

Test bench System

Figure 7 - Whole neural network system simulation

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 14/27

System

The system level contains the application and the interface. As mentioned previously, when using a native
framework, the system level is merged with the application level. There are 2 main reasons to make a distinction
between the system and the application and both are relevant only when compiling on a lower target (ie not in
native mode):

• The first reason is that the application and the interfaces are not executed by the same entities. The
application is executed by the DSP – Core (the SIMD part of the DSP) to take the advantage of the full
processing capacity. The interfaces are managed typically by DMAs or by the host processor. We will
detail more precisely the architecture of the DSP in a next paragraph.

• The second reason is that the interfaces support also the memory management. This point is not
obvious when running the project on a PC since the memory is almost infinite (from the application’s
point of view). On a real target, memory management is essential. The DSP-Core contains a local
memory (TCM) in small quantity. This memory has a low density and its cost in the final silicon is
significant. That’s why data and weights are stored in an external DRAM (dense memory) and we format
and load them dynamically into the DSP core’s TCM using a dedicated process.

The graph compiler generates the interface expressed in python. Python is a language widely used in the AI
ecosystem. It has a large range of external libraries which make it easy to use.

Test bench

The test bench is the final and highest level in the project. It contains the system with additional blocks. This level
is dedicated to the simulation and does not exist in the real life. Typically we will instantiate a data generator
which will feed the system with data to process. At the end of the processing chain, we can analyze the results.

The test bench can be expressed in various languages. In the context of the CPS project, we will use the Matlab
environment. Matlab is the generic tools for mathematical applications. It is easy to use and we can manipulate
data at a high level (the matrix container is typically built-in).

The data generator can also have various implementation: it can consist simply of a data reader from a file. This
is generally the first step since it is easy to implement and we can have a full control on the generated data.
However, its uses is limited and cannot manage complex scenarios; it can be replaced then by a true algorithm
generating data on the fly.

3.2. Test bench description

As mentioned above, the considered MIMO system model is described in deliverable D2.3 [Propositions for 5G,
including URLLC evolution] and the test bench focuses on the MIMO detector presented therein. In particular, a
Matlab model will generate a signal from a bit stream multiplexed on N antenna as depicted in Figure 8. The
noisy signal is received on the N Rx antenna. A baseband conversion is made in Matlab. A set of received samples
are then forwarded to the VSORA platform that instantiates the proposed neural-network MIMO decoder. It
should be noticed that the neural network is trained offline.

First, the output of the VSORA platform will be compared to the output of a high-performance Keras model of
the same decoder with large quantization of the processor. This will validate the flow. Then, an optimization of
the architecture will be proposed. It will then be possible to estimate the performance loss (Bit Error Rate)
introduced by the internal quantization of the processor and, more generally speaking, by the implementation
choices made.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 15/27

Figure 8 - Illustration of the test bench

3.3. VSORA DSP Architecture

DSP macro description

The DSP developed by VSORA belongs to the family of DSP called SIMD. Multiple data are processed in parallel
within Base Units (BUs) which are executing the same instruction (or suit of instructions) given by a sequencer.
Address Generator Units (AGU) compute addresses of data to be read or written in the local memory (TCM).
Additional DMAs give access to the TCM from outside. These blocks compose the part of the DSP called “core”.
This part is totally slaved by a host processor. The host processor communicates with the core through a mailbox.

The number of base units and the number of DMAs are parameters of the static configuration of the DSP. The
more there base units are instantiated in the core, the higher the processing capability will be.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 16/27

The quantization of the data, which has an impact on the memory footprint, is also a built-in parameter of the
ALU. The quantization follows the IEEE-754 standard with a configurable (static) number of bits for the mantissa
and for the exponent. The quantization is a key parameter in the study of the implementation of the algorithm
on a real target.

The Host processor is a commercial processor with its own operating system. The single constraint is to be
supported by the LLVM compiler which is the case for the most popular processors. It can be replaced in a first
step by the CPU of user’s PC, and the operating system by Linux. This allows to focus on the processing study
(processing capacity and memory needs, quantization). The CPS4EU project is restricted to this area.

Compilation flow

The philosophy of VSORA’s development flow is to keep the same code at all stages of development. All
simulation platforms (see paragraph 3.4) run the same code, but compiled with different options.

The graph compiler has a tensorFlow code as entry point and generates a C++ files calling the API of the inference
library. This library is developed by VSORA.

The LLVM based VSORA compiler has a C++ code as entry point and generates a binary file of the application for
the host processor. In this code, functions running on the core (parallel processing) are extracted and replaced
by a message (send through the mailbox to the core) (this takes the form a function call).

On the core side, the code of the vector math functions library is expressed in C and in a language developed by
VSORA to express the parallelism and functionalities of the core (“vs-code”). This code is compiled by GCC (well
know compiler in the Linux community) and by a compiler developed by VSORA; these binary codes are stored
in various locations in the core.

HOST

MAILBOX

TCM (memory)

AGU

ALU

BASE UNIT

AGU

ALU

BASE UNIT

AGU

ALU

BASE UNIT

AGU

ALU

BASE UNIT

DMA

DMA

MAILBOX

Sequencer

CORE

Figure 9 - VSORA's DSP architecture

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 17/27

3.4. Simulation platforms

VSORA’s development process is organized around simulation platforms. These platforms represent different
levels of the DSP model.

• Native platform

APPLICATION
INPUTS

GENERATOR

OUTPUTS

COMPARATOR

Test bench System

C++ / Python / tensorFlow matlab

LOCAL

Figure 11 - Native simulation

tensorFLow

C++

(inference library,

VSLIB)

Host code (binary)

User’s application

VSORA Graph
compiler

LLVM based
VSORA compiler

Figure 10 - VSORA’s DSP Compilation flow

C, vs-code

(vector math
functions library)

Core codes (binary)

(local processor +
sequencer)

GCC

VSORA
compiler

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 18/27

The native platform is the highest level of representation of the system. At this level, we do not have
the notion of DSP and the main focus is the application and the algorithm study. The environment
simulation is the user’s PC or servers.

The application / system must be described using tensorFlow or VSORA’s library and encapsulated in a
top written with python. The test bench is described with matlab. The communication between matlab’s
process and the system’s process is done with existing communication libraries (python).

This platform is used to develop the algorithm: high abstraction of computation, fast simulation.

• High Level Platform

The high level platform is the first level where the DSP appears. This level allows to validate the
compilation process (code transformation, isolation of the core from the host processing).

At this level, the application is compiled with the graph compiler and with the vsora/llvm compiler: the
interfaces are isolated, the code running on the core is isolated from the core running on the host.
Theses codes are executed within processes and executed locally on a PC.

This platform generates several reports: we can have an estimation of the number of cycles of the
simulation, and the peak memory usage. This level of simulations is well suited to evaluate the impact
of the quantization and to determine the architecture needed to run the application under real time
constraints.

• Low Level Platform / RTL platform

The low level and RTL platforms are similar to the high level platform: the differences appears in the
models of the DSP instantiated by the application: these models become more precise in the description
of the different components: we get more accurate simulations (in term of number of cycles) but the
simulation’s durations increase dramatically.

In this level, we can also instantiate a TLM or RTL model of the host to have a complete model of the
DSP.

These platforms are not used in the CPS4EU project: we will not give more information about them.

INPUTS

GENERATOR

OUTPUTS

COMPARATOR

Test bench System

C++ / Python matlab

INTER
FACE

Host Core

Application

C++

LOCAL

Figure 12 - High level simulation

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 19/27

• FPGA Platform

The FPGA platform is the lowest platform of development. The model of the core is mapped in a FPGA.
The system is run on remote mother board neighboring the FPGA while the test bench is run locally:
matlab is a software under commercial license and cannot be exported remotely.

The FPGA has limited capacity: the core can contain up to 2 Base Units and the memory of the TCM is
limited as well. Thus, we could not be able to run the exact configuration determined at the high level
simulation. However, this simulation is still relevant: it is a true core system (not only estimation) with
real memory conflicts. The simulations are faster than a RTL simulation (giving the same accuracy in
terms of processing cycles).

3.5. Remote FPGA infrastructure

Description

VSORA has chosen to use the cloud computing platform from Amazon, called Amazon Web Services (AWS).
Instances are available to offer custom accelerations with FPGA for the developers and are easy to use. The user
is connected in just a few clicks or commands to the remote FPGA infrastructure. He just requires internet access
to create AWS account to connect to FPGA instance.

Today, AWS has deployed FPGA instances in four regions of the world: Ireland (Western Europe), Oregon (USA
west coast), Virginia (USA east coast) and Sydney, Australia (Asia-Pacific-southeast). According to the region and
the user’s location, network efficiency may vary and price as well.

Web interface is available to configure interactively the instance. But the user can create and configure the
instance only by using command line interface and scripts.

Architecture

AWS FPGA instance provides access to Xilinx Virtex UltraScale+ FPGAs. The FPGA is controlled by a bus interface
(PCI express). Each FPGA contains approximately 2.5 million logic elements. Billing is based solely on time of use.

The instance may contain one, two or eight slots. One slot contains one FPGA. Since resources are limited, it may
happen that no FPGA is available at the creation request, but this this is relatively rare.

INPUTS

GENERATOR

OUTPUTS

COMPARATOR

Test bench System

C++ / Python matlab

INTER
FACE

Host Core

Application

C++ FPGA

LOCAL REMOTE

Figure 13 - FPGA simulation

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 20/27

For multi-core simulation, each core is mapped on its own FPGA: we need in this case a minimum of 2 slots.

Instance F1 name 2x 4x 16x

Number of slots 1 2 8

Price per hour ($) 1.65$ 3.3$ 13.2$

Table 1: FPGA board configuration sets

Network, security, how it works

First, the user runs command to create FPGA instance with his AWS account identity. This command returns AWS
instance parameters which are used to connect to the instance with the Secure Shell protocol (SSH).

The instance is loaded with a snapshot image stored remotely. It contains VSORA libraries and tools to compile
and run applications on native, high level, low level and FPGA platforms.

Some TCP or UDP ports specified by the user may be opened to exchange data safely between applications
running only on his local instance and the FPGA instance.

Then the user can send source code to the instance and compile his own application for FPGA platform.

AWS Global FPGA Image (AGFI)

When the user is connected to the FPGA instance, he has to load VSORA’s logic into the FPGA. VSORA has
synthesized several FPGA images (AGFI) with various characteristics. Each AGFI is specified by a number of Base
Units, by the ALU type and by the quantization.

Before running any application on the FPGA platform, the user must load a FPGA image to a specific slot number
with a simple command from his own instance. Then the user can launch the application compiled on the FPGA
instance. This application will send messages to the FPGA through the PCI express bus (this corresponds to the

Figure 14 - Remote FPGA infrastructure

AWS F1 Instance 4x

AWS IP

PCIe

Instance Snapshot

SSH

Local Instance

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 21/27

messages send from the mailbox on the host side to the mailbox on the core side. See Figure 9 - VSORA's DSP
architecture). A simulation executed on the FPGA is up to 100 times faster than on high level platform.

3.6. Experimental results

At this stage of the project, we do not have any results to present. For the time being, we put in place the
framework to enable the use of FPGA on the cloud. The framework has been validated on simple use case, not
on the DSP application envisaged in this project. In the same time, we started to work with Task 2.2 towards the
implementation of some innovative ideas developed in this task. It is planned to demonstrate on VSORA DSP
framework one of these ideas.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 22/27

4. ETHERNET TSN TESTBED FOR TIME SYNCHRONIZATION WITH SDN-BASED
MANAGEMENT

4.1. Ethernet TSN Testbed for Time Synchronization with SDN-based Management

IEEE Ethernet Time Sensitive Networking (TSN) is a set of standards that extend Ethernet to support real-time
communications. These standards are expected to have important roles in the future industrial systems such as
Cyber-Physical System (CPS). As a key standard in TSN, IEEE 802.1AS [AS] (hereafter referred to as simply AS)
specifies the clock synchronization/time synchronization (TS) for Ethernet network, targeting the precision levels
that are required by future communication systems such as smart factory networks or CPS.

In the IEEE 802.1AS standard, the synchronization is performed among the clocks of network devices, which are
connected via Ethernet links, switches, and/or bridges. The device with the clock selected as the source of time
is called Grand Master (GM). This standard selects the GM using the Best Master Clock algorithm (BMCA). Then
the GM’s clock provides the time reference to other devices across the network.

4.2. Ethernet TSN Testbed for Time Synchronization

General Architecture

In IEEE 802.1AS, some important parameters are the priorities of devices (priority1, priority2), the role of
Ethernet port (portRole), i.e., master or slave. The priority parameters allow the algorithm BMCA to select GM.
Through setting the priorities and portRole, our platform allows the algorithm BMCA inside each device to
recognize quickly the selected GM. This recognition is especially useful in a large-scale industrial network.

Configuring automatically the AS parameters is a challenging work. First, besides above important parameters,
this task requires to take into account various other parameters and network information (e.g., topology, traffic
pattern). Second, the future industrial systems require high levels of flexibility and re-configurability, which have
some important effects such as low time-to-integrate and on-the-fly configuration. As a result, we utilize
Software-Defined Networking (SDN) to propose a solution that manages and configures TSN, focusing on IEEE
802.1AS. SDN is a dynamic network architecture that can support to build a flexible and self-configurable
solution. The proposed solution is implemented into our SDN-enabled testbed, then verified and analysed by
several performance evaluations. More information about this testbed can be found in [CEA], which is conducted
in the context of our research on future CPS.

We implement the proposed solution into our SDN-enabled platform, named NEON [Decremps14], [Labraoui17].
Three important components of NEON are southbound API, controller, and services (Figure 15). NEON
southbound API is an SDN southbound, which allows to manage network devices such as access points,
switches/bridges, and gateways. NEON controller, similar to other SDN controller, is a logically centralized entity
that maintains the information about the network devices and allows to control the whole network. NEON
services are the software running on top of the controller, providing network functionalities, such as monitoring
and configuring.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 23/27

Figure 15 - General architecture of the testbed

The two notable services in this testbed are ASMonitoring and EthernetTSN. The ASMonitoring service, via
controller, will monitor the network devices, compute proper values for AS parameters, and generate AS
configuration file for each device. The EthernetTSN service prepares and sends TSN configuration parameters to
the network devices. This service gets the TSN configuration files and validates them to the TSN YANG models
(e.g., IEEE 802.1AS YANG model). The objective is to verify the presence of mandatory parameters and to check
whether the proposed values are inside the predefined ranges. Centralized Network Controller (CNC) and
Centralized User Configuration (CUC) are main components in the TSN standard IEEE 802.1Qcc, which allow to
configure the network devices based on user requirements.

Testbed setup

We implement the standard IEEE 802.1AS into the NXP© SJA1105 Ethernet switches, which are connected to
Intel© I210-equipped endnodes (Figure 16). There is also available implementation from NXP; however, our
implementation allows us to have full control on the switch. We setup a testbed with two end-nodes and two
switches; they connect together in a linear topology (Figure 17). The time synchronization program on the end-
nodes is implemented based on linuxptp [linuxptp]. Since linuxptp is an open software, it can be managed by one
of our plugins inside NEON southbound API. As currently CUC entity is not implemented in the testbed, we
propose that the CNC (i.e., SDN controller and services) takes charge of the endnodes’ configuration directly
without passing through CUC. After the CUC entity is implemented, it will be responsible for getting user
requirements, end-nodes’ capabilities, and pushing end-nodes’ configurations.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 24/27

Figure 16 - Switch and endnodes' network card

The default AS parameters of the testbed are showed in Table I. In IEEE 802.1AS, sync message and follow-up
message are the messages that the nodes exchange in order to compute and synchronize their clocks. Path delay
is the propagation delay between two nodes. Note that Table 2 shows the values of the interval parameters in
binary logarithm, i.e., if the value is -3 then the interval is 0:125 second. In the evaluation, we set the default run
time to 5 minutes, and the default GM to endnode 1.

Table 2 : AS parameters of the nodes

Figure 17 - Testbed setup

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 25/27

Experiment results

The evaluation results show that the solution is able to provides basic/essential functionalities, e.g., managing
devices/topology and configuring AS. The TS process, which is configured by the solution, provides highly precise
synchronization, on the scale of hundred nanoseconds.

We first analyse the scenario in which a new device is connected while the network is running TS. Specifically,
the network initially includes two switches and end-node 1; we run TS for 1 minute then we connect the end-
node 2. After the end-node 2 is connected, the ASMonitoring service detects the new device and generate an AS
configuration file. The EthernetTSN service sends the AS configuration to this device, allowing it to join the
network and start synchronizing its clock to the GM’s clock.

In Figure 18, we depict the offset between the GM and other devices. Note that the offset of end-node 1 is not
available because end-node 1 is the GM. The figure shows that the new device (i.e., end-node 2) is synchronized
to the GM without impacting other nodes. In the proposed solution, a new device is recognized automatically
when it connects to the network; and this device is synchronized immediately if it is AS-capable. In other words,
the current solution can provide an initial result of flexibility, i.e., the ability to automatically admit new device
into TS process. On the other hand, when a device is synchronized, the offset between it and the GM is on the
scale of hundred nanoseconds. This is a tight accuracy for local area network, compared to other works in the
literature, which have the offset “on the microsecond scale”, as stated in [Volgyesi17].

Figure 18 - Time offset between GM’s clock and other clocks in scenario of connecting new device

We evaluate another scenario in which the GM role is changed from end-node 1 to end-node 2 (Figure 19). Before
changing GM, switch 1 and switch 2 synchronize their clocks to the clock of end-node 1. After changing, the two
switches and also the end-node 1 automatically start synchronizing to the clock of end-node 2. The reason of the
change can be that, as an example, the clock accuracy of the newly connected end- node 2 is higher than end-
node 1, so the ASMonitoring service decides to change then generates corresponding configuration. The
EthernetTSN service sends the newly generated AS configuration to the network devices. Figure 19 shows that
after changing the GM, the TS process is disrupted for around more than 10 seconds. We define that the TS
process is disrupted when the offset is outside the range [−1000ns; 1000ns]. Within the disrupted period in Figure
19, the offset values are in the order of million nanosecond. After changing GM, the two switches obtain again
the performance as before the changing. In other words, the current solution can provide an initial
reconfigurability, i.e., the ability to reconfigure for new GM.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 26/27

Figure 19 - Time offset in the scenario of changing GM

Based on the current results, we plan to develop further the testbed; one of important development is to
integrate wireline TSN into wireless systems such as 5G radio. The integration between TSN and 5G is a
demanding requirement in future communication systems, especially in the context of Industry 4.0 and Cyber-
Physical System (CPS). An example of the need for that integration is the connection between wireline floor
network and the remote manufacturing execution system that can only be reached via wireless links.

4.3. References

[AS] “IEEE draft standard for local and metropolitan area networks - timing and synchronization for time-sensitive
applications,” IEEE P802.1ASRev/D6.0 December 2017, pp. 1–496, Jan 2018.

[CEA] M. -T. Thi, S. Ben Hadj Said and M. Boc, "SDN-Based Management Solution for Time Synchronization in TSN
Networks," 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Vienna, Austria, 2020, pp. 361-368.

[Decremps14] S. Decremps, S. Imadali, and M. Boc, “Fast deployment of services in sdn-based networks: The
case of proxy mobile ipv6,” Procedia Computer Science, vol. 40, pp. 100–107, 2014.

[Labraoui17] M. Labraoui, M. Boc, and A. Fladenmuller, “Self-configuration mechanisms for sdn deployment in
wireless mesh networks,” in 2017 IEEE 18th International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM). IEEE, 2017, pp. 1–4.

[linuxptp] R. Cochran et al., “The linux ptp project.”

[Volgyesi17] P. Volgyesi, A. Dubey, T. Krentz, I. Madari, M. Metelko, and G. Karsai, “Time synchronization services
for low-cost fog computing applications,” in 2017 International Symposium on Rapid System Prototyping (RSP).
IEEE, 2017, pp. 57–63.

D2.5 – simulation
tools and
experimental
platform - v1

CPS4EU – Public
This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement

No 826276

 27/27

5. CONCLUSION

In the document D2.5, we presented the achievements of the Work Package 2, task 2.3 dealing with the
prototyping activity of current and future communication systems for Cyber Physical System.

The integration of existing technologies led to the design of the PIARCH board. This is the result of a tight
collaboration with teams working in Work Package 6: we received from this group vertical specifications and the
resulting board will be used by a secure gateway to enable remote monitoring and maintenance of a connected
and possibly autonomous vehicle.

The deliverable D2.3, dealing with novel enablers for future communication systems going beyond 4G could
offer, presented in particular a MIMO system based on algorithms using trained neural network (training is done
offline). We propose to implement this algorithm on a real target. This allows to face issues not seen during the
mathematical study: determine the computation requirements to run the algorithm under real time constraint,
evaluate the impact of the quantization and focus more precisely on memory management.

To achieve this, we presented a new way of development: whereas usually the implementation of the algorithm
involves several teams with their own expertise, by using this process, DSP engineers can manage at a very early
stage of development the various implementation issues (processing capacity, memory, quantization) and
integrate / modify the algorithm to meet the requirements in terms of performances and silicon as well. The time
to market, which is also a key point in a commercial project, should dramatically decrease.

This new process is articulated around simulation platforms: the developer keeps the same code at all stages of
development and with different compilation options can refine the simulation until a simulation on a FPGA
platform. By using commercial offers of remote FPGA in the cloud, we can run long simulations on realistic target
with limited costs.

Regarding the networking constraint, which is also a key point in the design of a low latency communication
system, we presented first results of the implementation of the IEEE 802.1AS norm which deals with time
synchronization network issue. Preliminary results show that the synchronization offset between the grand
master and a device is on the scale of hundred nanoseconds, which fulfil the requirements and is promising for
further simulations.

This document is a first release describing the process of the validation. Results of implementation will be
completed and presented in the final version at the end of the project.

