
Synthesizing Control for a System with
Black Box Environment, Based on Deep

Learning

Simon Iosti1(B), Doron Peled2(B), Khen Aharon2(B), Saddek Bensalem1(B),
and Yoav Goldberg2(B)

1 University Grenoble Alpes VERIMAG, 38410 St. Martin d’Héres, France
iosti.simon@gmail.com, saddek.bensalem@gmail.com

2 Department of Computer Science, Bar Ilan University, 52900 Ramat Gan, Israel
doron.peled@gmail.com, khen.aharon@gmail.com, yoav.goldberg@gmail.com

Abstract. We study the synthesis of control for a system that inter-
acts with a black-box environment, based on deep learning. The goal is
to minimize the number of interaction failures. The current state of the
environment is unavailable to the controller, hence its operation depends
on a limited view of the history. We suggest a reinforcement learning
framework of training a Recurrent Neural Network (RNN) to control
such a system. We experiment with various parameters: loss function,
exploration/exploitation ratio, and size of lookahead. We designed exam-
ples that capture various potential control difficulties. We present exper-
iments performed with the toolkit DyNet.

1 Introduction

Deep learning (DL) [8] led to a huge leap in the capabilities of computers. Notable
examples include speech recognition, natural language processing, image recog-
nition and calculating strategies for difficult games, like Chess [5] and Go [4].

We study the deep-learning based synthesis of control for finite state systems
that interact with black-box environments. In the studied model, the internal
structure of the environment is not provided and its current state is not observ-
able during the execution. In each step, the system makes a choice for the next
action, and the environment must follow that choice if the action is enabled.
Otherwise, a failed interaction occurs and the system does not move while the
environment makes some independent progress. The control enforces the next

S. Iosti and S. Bensalem—The research performed by these authors was partially
funded by H2020-ECSEL grants CPS4EU 2018-IA call - Grant Agreement number
826276.
D. Peled and K. Aharon—The research performed by these authors was partially
funded by ISF grants “Runtime Measuring and Checking of Cyber Physical Systems”
(ISF award 2239/15) and “Efficient Runtime Verification for Systems with Lots of Data
and its Applications” (ISF award 1464/18).

c© Springer Nature Switzerland AG 2020
T. Margaria and B. Steffen (Eds.): ISoLA 2020, LNCS 12477, pp. 457–472, 2020.
https://doi.org/10.1007/978-3-030-61470-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61470-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-61470-6_27

458 S. Iosti et al.

action of the system based on the available partial information, which involves
the sequence of states and actions that occurred so far of the system and the
indication of success/failure to interact at each point. The control goal is to min-
imize the number of times that the system will offer an action that will result in
a failed interaction.

The motivation for this problem comes from the challenge to construct dis-
tributed schedulers for systems with concurrent processes that will lower the
number of failed interactions between the participants. In this case, the environ-
ment of each concurrent thread is the collection of all other threads, interacting
with it. An alternative approach for constructing schedulers that is based on
distributed knowledge was presented in [2].

Algorithmic synthesis of control for enforcing temporal constraints on inter-
acting with an environment was studied in [12,13]. It includes translating a
temporal logic specification into an automaton [7], determinizing it [14], and
computing a winning strategy for a game defined over that automaton [18].
Reinforcement learning (RL) [15] suggests algorithmic solutions for synthesizing
control for systems where the goal is to maximize (minimize, respectively) some
accumulated future reward (penalty, respectively) over the interaction with the
environment. In RL, a complete model of the environment does not have to be
given, and in this case control can be synthesized through experimenting with
it. However, often the current state of the environment is fully observable; this
is not the case in our studied problem.

One approach for constructing control of a system that interacts with a black-
box environment is to first apply automata learning techniques [1] in order to
obtain a model of the environment. However, a complete learning of a model
for the environment is sometimes infeasible for various reasons, e.g., when one
cannot interface directly with the environment in isolation for making the needed
experiments, or due to high complexity.

We study the construction of control based on neural networks, where after
training, the neural network is used to control the system. This control con-
struction is adaptive, which is important in the cases where the environment can
change its typical behavior or where the tradeoff between further training and
improved performance is not clear in advance; we can resume the training after
deploying the system, and collecting runtime statistics.

We employ Recurrent Neural Networks (RNN), which include a feedback
loop that returns part of the internal state as additional input. This allows the
output to depend on the history of inputs rather than only on the last input. An
RNN is well suited to provide the control strategy due to the invisibility of the
structure and the immediate state of the environment; the controller’s choice for
the next step of the system needs to be based on its limited view of the past
execution history.

Neural networks have been used within reinforcement learning for finding
strategies for difficult board games such as Chess and Go. They were trained to
provide the quality function Q from the current state of the game to a numeric
value. The obtained game strategy chooses the move that maximizes the current

Synthesizing Control for a System with Black Box Environment 459

quality function. Our model cannot calculate a Q function, since the current state
of the environment, corresponding to the game board in those examples, is not
visible. Instead, we exploit a summary of the visible part of the execution so far,
as calculated by the trained neural network. Notable work that involve training
an RNN includes playing Atari games such as space invaders or breakout [9].
The reason for using the RNN architecture for these games is that the strategy
depends on a limited number of preceding states (specifically for these games,
four states are used); this permits the strategy to be influenced by the speed and
trajectory of the movement. By contrast, our study involves training an RNN
to produce a strategy that depends on a long history of the interaction between
the system and the environment.

In [11] we compared the potential use of automata learning, deep learning
and genetic programming for control synthesis. In this paper we focus on deep
learning and present a full study of a methodology for synthesizing control to
a system that interacts with a black-box environment. We study the required
architecture and training parameters and present experiments using the DyNet
tool [6].1

2 Preliminaries

We study the construction of control for a finite state reactive system that inter-
acts with black-box environment.

System and Environment. We study systems that are modeled as finite state
automata. Let A = (G, ι, T, δ) be an automaton, where

– G is a finite set of states with ι ∈ G its initial state.
– T is a finite set of actions (often called the alphabet).
– δ : (G × T) → G ∪ {⊥} is a partial transition function, where ⊥ stands for
undefined. We denote en(g) = {t|t ∈ T ∧ δ(g, t) �= ⊥}, i.e., en(g) is the set of
actions enabled at the state g. We assume that for each g ∈ G, en(g) �= ∅.

– An optional component is a probabilistic distribution on the selection of
actions d : G × T → [0, 1] where Στ∈T d(g, τ) = 1. Then, the model is called
a Markov Chain. In this case, δ(g, t) = ⊥ iff d(g, t) = 0.

The asymmetric combination of a system and an environment As	Ae involves
the system automaton As = (Gs, ιs, T s, δs), and the environment automaton
Ae = (Ge, ιe, T e, δe), where T s ∩ T e �= ∅. The two components progress syn-
chronously starting with their initial state. The system offers an action that
is enabled from its current state. If this action is enabled also from the cur-
rent state of the environment automaton, then the system and the environment
change their respective states, making a successful interaction. If the action is

1 DyNet is a python package for automatic differentiation and stochastic gradient
training, similar to PyTorch, and TensorFlow but which is also optimized for strong
CPU performance.

460 S. Iosti et al.

not currently enabled by the environment, the interaction fails; in this case, the
system remains at its current state, and the environment chooses randomly some
enabled action and moves accordingly. After a failed interaction, the system can
offer the same or a different action.

Formally,
As	Ae = (Gs × Ge, (ιs, ιe), T s × T e, δ)

where

δ((gs, ge), (ts, te)) =

{
(δs(gs, ts), δe(ge, ts)), if ts ∈ en(ge)
(gs, δe(ge, te)), otherwise

An environment with a probabilistic distribution on selecting actions makes a
probabilistic choice only if the action offered by the system is currently disabled.
In this case, δ((gs, ge), (ts, te)) = (gs, δe(ge, te)) with probability d(ge, te). We
restrict ourselves to non-probabilistic (and deterministic) systems.

An execution ξ of As	Ae is a finite or infinite alternating sequence

(gs
0, g

e
0) (ts0, t

e
0) (gs

1, g
e
1) . . .

of pairs of states and pairs of actions, where gs
0 = ιs, ge = ιe and (gs

i+1, g
e
i+1) =

δ((gs
i , g

e
i), (t

s
i , t

e
i)). According to the definitions, if tsi �= tei , then gs

i = gs
i+1; this is

the case where the interaction failed. We denote by ξ|i the prefix of ξ that ends
with the states (gs

i , g
e
i).

Consider the system in Fig. 2 (left) and its environment (middle). This system
can always make a choice between the actions a, b and c, and the environment
has to agree with that choice if it is enabled from its current state. If the system
selects actions according to (abc)∗, then the environment can follow that selection
with no failures. On the other hand, if the system selects actions according to
(baa)∗, the system will never progress, while the environment keeps changing
states.

Supervisory control studies the problem of constructing a controller that
restricts the behavior of a system; the combination guarantees additional require-
ments [16]. Our work is related to two methods for supervisory control, reinforce-
ment learning and deep learning.

Reinforcement Learning. Reinforcement learning includes methods for con-
trolling the interaction with an environment [15]. The goal is to maximize the
expected utility value that sums up the future rewards/penalties; these can be
discounted by γn with respect to its future distance n from the current point,
with 0 < γ ≤ 1, or be summed up with respect to a finite distance (horizon).
Typically, the model for RL is a Markov Decision Process (MDP), where there is
a probability distribution on the states that are reached by taking an action from
a given state. When the current state of the environment is not directly known
to the controller during the execution, the model is a Partially Observable MDP
(POMDP).

Synthesizing Control for a System with Black Box Environment 461

A value-based control policy (strategy) can be calculated by maximizing
either a state value function V (s) or a state-action value Q(s, a). When the
structure of the environment is known, a procedure based on Bellman’s equa-
tion [15] can be used. If the structure is unknown, a randomized-based (Monte
Carlo) exploration method can be used to update the value function and convert
towards the optimal policy.

Policy based RL methods avoid calculating the optimal utility value directly
at each state, hence are more effective when the number of possible states is huge.
The policy is parametric and its parameters are optimized based on gradient
descent. Such parameters can be, in particular, the weights of a neural network.

The training data is either selected a priori, according to some predefined
scheme, or using the output of the partially trained neural network. In mixed
training mode, we perform with probability ε an exploration step based on a
random choice with uniform probability and with probability 1−ε an exploitation
step, based on the selection of the partially trained network. The value of ε may
diminish with the progress of the training.

Deep Learning. Deep learning is a collection of methods for training neural
networks, which can be used to perform various tasks such as image and speech
recognition or playing games at an expert level. A neural network consists of
a collection of nodes, the neurons, arranged in several layers, each neuron con-
nected to all the neurons in the previous and the next layer. The first layer is the
input layer and the last layer is the output layer. The other layers are hidden.

The value xi of the ith neuron at layer j + 1 is computed from the column
vector y = (y1, . . . , ym) of all the neurons at layer j. To compute xi, we first
apply a transformation ti = wiy+bi where wi is a line vector of weights, and bi is
a number called bias. Then we apply to the vector t = (t1, . . . , tn) an activation
function, which is usually non-linear, making the value of each neuron a function
of the values of neurons at the preceding layer. Typical activation functions
include the sigmoid and tanh functions, as well as the softmax.

The softmax activation function takes a vector of values and normalizes it
into a corresponding vector of probability distributions, i.e., with values between
0 and 1, summing up to 1.

softmax(t1, . . . , tn) =
(

et1

Σieti
, . . . , . . . ,

etn

Σieti

)

Given values for all neurons in the input layer, we can compute the values for
all neurons in the network, and overall a neural network represents a function
R

n → R
m where n is the size of the input layer, and m the size of the output

layer.
The values of the weights wi and the biases bi are initially random, and mod-

ified through training. A loss function provides a measurement on the distance
between the actual output of the neural net and the desired output. The goal of
training is to minimize the loss function. Optimizing the parameters is performed
from the output layer backwards based on gradient descent.

462 S. Iosti et al.

For applications where sequences of inputs are analyzed, as e.g. in language
recognition, one often uses a form of network called Recurrent Neural Network
(RNN). An RNN maintains a feedback loop, where values of some neurons are
returned to the network as additional inputs in the next step. In this way an
RNN has the capability of maintaining some long term memory that summarizes
the input sequence so far. The backward propagation of the gradient descent is
applied not only once to the RNN, but continues to propagate backwards accord-
ing to the length of the input sequence, as the RNN has been activated as many
times as the length of the input so far. This allows training the RNN with respect
to the input sequence instead of the last input. However the long propagation
increases the problem of vanishing/exploding gradient. A more specific type of
RNN that intends to solve this problem is a Long Short-Term Memory, LSTM.
It includes components that control what (and how much) is erased from the
memory layer of the network and what is added.

3 Controlling a System Interfacing with a Black Box

We seek to construct a controller for the system that will reduce the number of
failed interactions. This is based on the information visible to the system (hence
also to the controller), which is the executed sequence of system states, actions
offered and the success/failure status of these interactions. The controller main-
tains and uses a summary of visible part of the execution so far. In addition, it
receives the information about the latest execution step: the state of the system,
the action selected by the system and whether the interaction succeeded or not.
It then updates the summary and selects an enabled action; see Fig. 1.

Fig. 1. A contoroller for the system

We now formally define the particular control problem. The view (visi-
ble part) v(ξ) of an execution ξ = (gs

0, g
e
0) (ts0, t

e
0) (gs

1, g
e
1) . . . is the alternating

Synthesizing Control for a System with Black Box Environment 463

sequence gs
0(t

s
1, b1)gs

1(t
s
2, b2) . . ., where bi = (tsi = tei). v(ξ|i) is the prefix of v(ξ)

that ends with gs
i . The control output is a function from the visible part of an

execution to an action that is enabled in the current state of the system and will
be offered to the environment in the next step.

Due to the invisibility of the environment structure and the state, there can
be multiple histories (i.e., prefixes of an execution) that correspond to the same
view. Future failing actions can cause the environment to make choices that are
invisible to the controller; there can be multiple continuation from the current
state. The goal of adding control is to minimize the sum of penalties due to failed
interactions up to some fixed horizon.

The length of the current execution prefix, and subsequently the view, can
grow arbitrarily. Instead, we maintain a finite summary of the view m(v(ξ|i))
that we can use instead of v(ξ|i) itself. We seek a control function that is based
on a summary of the view of the current prefix of the execution, and in addition
the most recent information about the action selected by the system.

We assume a fixed probability on the selection of actions by the environment,
in case of an interaction failure; for the experiments, we will assume a uniform
distribution. We limit ourselves to deterministic policies, where at each point
there is a unique selection of an enabled action. After training, our RNN will
output some probability distribution on the selection of the next action, and the
system will select the action with the highest probability.

A Suite of Examples

The following examples present for constructing a controller. They were used
to select the loss function needed for training the neural networks used as con-
trollers.

In Example permitted in Fig. 2, the system allows actions a, b and c. A
controller that has the same structure as the environment would guarantee that
the system never makes an attempt to interact that will fail, restricting the
system to the single sequence (abc)∗. The action that appears in the figure next
to a state of the controller is the action it enforces to select.

Note that the finite state controllers suggested in the figures of this section
are not the actual ones that are implemented using neural networks trained
through deep-learning.

464 S. Iosti et al.

g1

a, b, c

e1 e2

e3

a

bc

s1{a} s2 {b}

s3

c

a

bc

Fig. 2. permitted: System (left), Environment (middle) and Controller (right)

In Example schedule in Fig. 3, the controller must make sure that the system
will never choose an a. Otherwise, after interacting on a, the environment will
progress to e3, and no successful interaction with b will be available further. A
controller with two states that alternates between b and c, i.e., allows exactly
the sequence of interactions (bc)∗ is sufficient to guarantee that no failure ever
occurs.

System

g1

g2 g3
a

b

b

c

Environment

e1

e2 e3 e4b

c
a

c

a

Fig. 3. schedule: The control needs to avoid the action a as its initial choice

In Example cases in Fig. 4 the system is obliged to offer an a from its initial
state. The environment allows initially only b or c. Hence, the interaction will
fail, the system will stay at the same state and the environment will progress to
e2 or to e3, according to its choice, which is not visible to the system. After the
first a, the system does not change state, hence it is again the only action that it
offers. The controller that appears in Fig. 4 (left) moves after offering the first a,
which is due to fail, from s1 to s2. It checks now whether offering a fails again;
if not, it moves to s3 and restricts the environment to offer (ba)∗. Otherwise, it
moves to s4 and will restrict the environment to offer (ac)∗.

In Example strategy in Fig. 5, the system offers initially only the interaction
a, which necessarily fails, and consequently the environment makes a choice that
is invisible to the system. After that, the system and the environment synchronize
on an a. At this point, if the system chooses, by chance, an action that is enabled
by the environment, making a successful interaction (b or c, respectively), it will

Synthesizing Control for a System with Black Box Environment 465

g1

g2

ab, c

e1

e2 e3

e4 e5

b

ab

c

ca

s1 {a}

s2 {a}

s3{b} s4 {a}

s5 c

g1

g2

g1
g1

g2g1

Fig. 4. cases: Needs to check if a succeeded

necessarily lead to entering self loops that are incompatible (at g3 and e7, or at
g4 and e6, respectively), and no further successful interaction will happen. On
the other hand, if the system chooses an interaction that immediately fails, it
must repeat that same choice; This leads to compatible loops (g3 and e6, or g4

and e7), and there will be no further failures; flipping to the other choice after
that will lead again to the incompatible loops.

Unfortunately, because of the invisible choice of the environment at the begin-
ning of the execution, no controller can guarantee to restrict the number of fail-
ures in every execution. However, a weaker goal can be achieved, restricting the
number of failures with some probability, which depends on the probability p of
the environment to choose an b over c from its initial state. If we can learn the
probability p, we may guarantee restricting the number of failures to two in at
least max(p, 1 − p) ≥ 0.5 of the cases.

The Training Process

We will now show how an RNN of type LSTM can be trained to control a system
in order to reduce the overall number of failures. The input layer is a vector of
size q × |T |, where q is the number of states of the system and |T | is the number
of transitions. The output of the last layer is passed through a softmax function
to give the actual output of the network.

Let us consider the situation after a partial execution, where the RNN is fed
the input and produces an output w. The system uses this output to choose
an action aj among its available actions. Let t be the number of such currently
enabled actions. We distinguish two cases:

466 S. Iosti et al.

System

g1

g2

g3 g4

a

b

b

c

c

Environment

e1

e2 e3

e4 e5

e6 e7

b

a

c

b

c

a

b

c

Fig. 5. strategy: Fail next, or succeed and fail forever

– If action aj is successful, then the loss is defined to be

−log(softmax(w)j)

where softmax(w)j is the jth coordinate of the softmax of the output w.
– If action aj is failed, then the loss is defined to be

Σ1≤i≤t,i�=j − 1
t − 1

log(softmax(w)i)

Note that in the failed case, if there is only one available action (t = 1), then
the loss is 0, which is not problematic since there is only one action to choose
from. A backward propagation pass in then done through the RNN using this
loss formula.

This loss function can initially seem counter-intuitive because of the second
case, i.e., of a failed action. When offering action aj fails, we chose to interpret
this failure as meaning that any other choice would have been equally good.
Consequently, we update their probabilities towards this. In other words, when
aj fails, instead of reducing its probability, we “even out” the probabilities of
all other actions towards a uniform distribution among them. This effectively
results in a reduction of the probability of aj , but with more control over the
probabilities of other actions.

We compare the above loss with another loss function (which we used in
earlier experiments) that follows a more direct approach. It is computed in the

Synthesizing Control for a System with Black Box Environment 467

same way as the one described in the case of a successful action. In the case
where action aj is failed, the loss is computed as

log(softmax(w)j)

This results in effectively “punishing” the choice of selecting aj , lowering its
probability, instead of rewarding all other actions. We will call this loss the
naive loss. Experiments show that this loss function has a tendency to learn less
efficiently than the other one, and sometimes does not learn an optimal behavior
at all.

Training Pattern with Fixed Lookahead. We fix a lookahead number l ≥ 0
(where l = 0 corresponds to use the simple training pattern described above).
We train the network at step n only when the execution reaches step n + l, and
the loss is computed according to the same formulas as above, except that the
l last steps of the execution are taken into account to compute the loss at step
n. When the current partial execution of length n + l, we observe the output w
that the RNN has generated at step n, with action aj that was chosen by the
system. Let successes be the number of successful actions taken by the system
between step n and step n + l, and failures to be the number of failures between
the same steps.

The loss is then computed as:

successes × −log(softmax(w)j) + failures × −Σ1≤i≤tlog(softmax(w)i)

The backward propagation is then applied to this loss at step n (and not at step
n + l).

We also experimented with fixing a probability ε for exploring actions ran-
domly, not based on the output of the partially trained RNN, both with a fixed
ε and with diminishing the value of ε as training progressed. Another variant
we experiment with is using a dual network, where, for diminishing instability
of the updates, one is used for the exploitation of the partial training, and the
other is updated. Switching between them each fixed number of steps.

The output provided by our RNN after training is, as a result of the softmax
activation function, a probability distribution among the actions that can be
taken from the current state. After training, we choose the action suggested
by the controller with the highest probability. In many cases the training will
converge towards a non probabilistic control policy, but will be limited due to
the duration of the training. It is known from RL theory that for an environment
that is deterministic or a Markov Chain, there exists an optimal deterministic
policy that guarantees the highest expected discounted-sum utility from each
state.

The fact that the environment is a black box does not change the situation,
and a deterministic optimal control policy still exists. Yet, if we do not know
how many states the environment has, we cannot even bound the size of such a
policy. The number of states affects the number of required experiments and their

468 S. Iosti et al.

length. A further complication occurs because the state of the environment, and
its selection in case of a failure, are unobservable. Based on a given finite view,
the environment can be in one of several states according to some probability
distribution (which we cannot calculate, since the environment is a black box).
In fact, it is possible that there can be infinitely many such distributions for
different views.

Even when there exists an optimal deterministic strategy, we have no guar-
antee that the deep learning training will converge towards a deterministic strat-
egy. For consider again Example strategy in Fig. 5. In case that the environ-
ment makes its choice from e1 with uniform probability, any probabilistic choice
between b and c by the system will make as good (or bad) policy as making a
fixed choice between these two actions.

4 Experiments

We describe several experiments with the examples from the training suite. The
experiments show testing different training patterns on each individual example.
All results have been obtained using a similar structure for the RNN associated
to the network. The size of the LSTM layer is 10. Initializing the non-recurrent
parameters of the network is according to the Glorot initialization. The train-
ing passes have been done in every case by generating training sequences of
increasing size, from 1 to 50, and repeating this 50 times.

Comparison of the Actual and the Naive Loss. The aim of this section is
to show the advantage of using our actual loss described in the previous section
over using the naive loss.

We present in Table 1 the results of experiments on four examples from the
training suite, with various values for the lookahead and ε. The rows correspond
to the different environments, and the columns to the pair (l, ε), where l is the
lookahead in the training, and ε is the probability of performing an exploration
step. Shaded lines correspond to the results when using the naive loss, while
unshaded lines show the results for our actual loss. The entries in the table show
the average percentage of failures when generating 100 executions of size 200.

Table 1. Summary of Experiments; shaded results are obtained using the naive loss

%failures \ (l, ε) (0, 0) (0, 0.2) (0, 0.5) (3, 0) (3, 0.2) (3, 0.5) (20, 0) (20, 0.2) (20, 0.5)

0.0 0.0 0.0 0.0 0.0 7.6 15.9 22.2 27.0
permitted

15.69 18.62 18.68 43.79 55.01 61.44 65.56 65.32 67.39

98.5 98.4 98.5 9.9 0.2 0.0 0.5 0.3 78.5
schedule

98.39 96.47 97.08 0 0 0 0 0 94.75

1.7 1.6 6.9 1.5 1.5 1.6 34.5 38.9 45.6
cases

3.04 1.78 2 1.56 1.54 1.94 56.06 42.98 47.04

46.7 49.6 44.9 80.1 85.0 85.0 28.7 22.3 4.5
choice-scc

46.22 54.2 64.0 80.2 73.7 70.5 36.8 30.3 33.5

Synthesizing Control for a System with Black Box Environment 469

We first discuss the results concerning our actual loss function (unshaded
lines in the table).

In example permitted, the basic no-lookahead learning without exploration
works very well, and both lookahead and exploration tend to be counterproduc-
tive. This is not too surprising observing that a lookahead or exploration pattern
here would only blur the fact that a good choice is immediately interpretable as
such, depending on the failure or success of the action. In example schedule,
the lookahead is crucial for learning, and the exploration is again either counter-
productive, or at least not advantageous (depending on the lookahead). In exam-
ple cases, a long lookahead is again not efficient, and the exploration is not
necessary. In example choice-scc, a very long lookahead is beneficial, which
is to be expected in this example since a good choice at the beginning of the
execution can be identified as such only after the three first steps. Seeing several
successful steps afterwards to counter the effect of the failures at the beginning.
Even in the case of a long lookahead, exploration with the high probability of
0.5, improves dramatically the results, where a long lookahead is insufficient to
reach an almost optimal behavior. This shows the importance of exploration
in this kind of situations where better strongly connected components are only
reachable through worse paths that the system tends to avoid in the case of pure
exploitation.

Note that the training was performed on sequences of length at most 50, but
the behavior of the controller is verified on sequences of length 200, showing
that a training on short sequences allow the controller to generalize its behavior
on longer sequences. This gives evidence that a finite training is effective to
learn an optimal behavior on very (possibly arbitrary) long sequences. Of course,
without having a good estimate on the number of states of the environment,
a“combination locks” in it can hide behaviors that deviate from the learned
control.

Results using the naive loss appear as shaded lines in Table 1, for compar-
ison with our actual loss. We will use as point of comparison the values of the
parameters where the use of one loss or the other raises results that are almost
optimal. In examples schedule and cases, we can see that both losses perform
similarly: the situations where the training is optimal are the same for both
losses. In examples permitted and choice-scc, we see that the naive loss per-
forms very badly in comparison with the actual loss. In both cases the naive loss
never manages to reach an optimal behavior for the system, while the actual loss
performs very well for good choices of parameters.

Additional Experiments. Several other experiments were made using direct
variations of our training scheme. We tested two standard techniques from deep
learning: diminishing the value of the exploration/exploitation ratio ε along the
training, and using two “dual” networks. One of which is updated at every step as
usual, and the other is trained only at the end of a training sequence but is used
to generate these sequences. Depending on the examples we tested these variants
on, the results were either slightly better or similar to our results without these.

470 S. Iosti et al.

Another kind of experiments that we did was using combinations of pairs of
our examples from the training suite. We devised examples mixing the behav-
iors of permitted and schedule, and mixing the behavior of permitted and
choice-scc. Both of these combined examples were built using examples for
which the optimal values of the parameters were very different. Surprisingly, we
found that we still were able to learn these examples, using the same training
pattern but alternating variables l and ε from those that achieved the optimal
values for the two original examples. On the other hand, the length and number
of training sequences had to be chosen using some additional heuristics, because
the original values for these were not efficient for training. We detail our results
in the following table. P is the number of training passes; a training pass involves
running the usual training scheme with the first values of (l, ε) with N sequences
of length L, then again with the second values of (l, ε). Every experiment was
repeated 20 times, and the lowest, highest, and average failure rates are in the
shaded columns (Table 2).

Table 2. Parameters and results for combined examples

Values of
(l, ε)

L N P lowest highest average

permitted and
schedule

(5, 0) and
(0, 0)

8 1000 2 0.0 98.0 5.0

permitted and
choice-scc

(50, 0.5)
and (0, 0)

50 10 8 1.5 66 33.5

5 Conclusions and Discussion

We presented a methodology for constructing control for a system that inter-
acts with a black-box environment: it is not restricted to a specific objective,
and it can be applied to various types of systems and environments. Instead of
training the control for a specific system, we suggested the use of small, well
designed, examples, which feature various potential challenges for training. We
demonstrated our approach on training a set of examples using the DyNet tool.

Compared with the impressive use cases of deep learning, such as image
recognition, translating natural languages, autonomous driving or playing games,
the learning-based control synthesis problem that we considered here seems much
simpler. However, it allows studying the principles and effect of different learning
techniques.

Our use of recurrent deep learning, based on RNNs or LSTMs, has several
benefits. First, the method is independent of knowing the states of the environ-
ment. The states of the constructed controller are kept implicitly in the hidden
layer(s) of the neural network. We are oblivious of whether two internal repre-
sentations are isomorphic w.r.t. the strategy, nor do we have to care.

Synthesizing Control for a System with Black Box Environment 471

Some works on deep reinforcement learning use recurrent deep learning,
e.g., [9,10,17]. This was done for interactive Atari games, where the single cur-
rent observed screen frame does not provide a complete current state. Since the
control objective is the standard one, these methods apply a standard loss func-
tion that is based on the square of the difference between the current and the
previous objective value.

Our long term goal is to expand this approach for constructing distributed
schedulers for systems with concurrent processes that will lower the number of
failed interactions between the participating processes. This can then be com-
pared with an alternative approach for constructing schedulers that is based on
distributed knowledge [2,3].

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Basu, A., Bensalem, S., Peled, D.A., Sifakis, J.: Priority scheduling of distributed
systems based on model checking. Formal Methods Syst. Des. 39(3), 229–245
(2011)

3. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge
based controlling of distributed systems. In: Bouajjani, A., Chin, W.-N. (eds.)
ATVA 2010. LNCS, vol. 6252, pp. 52–66. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15643-4 6

4. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

5. Silver, D., et al.: Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR, abs/1712.01815 (2017)

6. Neubig, G., et al.: DyNet: the dynamic neural network toolkit. CoRR,
abs/1701.03980 (2017)

7. Gerth, R., Peled, D.A., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Dembinski, P., Sredniawa, M., (eds.) Proto-
col Specification, Testing and Verification XV, Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and Verifica-
tion, Warsaw, Poland, June 1995. IFIP Conference Proceedings, vol. 38, pp. 3–18.
Chapman & Hall (1995)

8. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep learning. In: Adaptive Compu-
tation and Machine Learning. MIT Press (2016)

9. Hausknecht, M.J., Stone, P.: Deep recurrent Q-learning for partially observable
mdps. CoRR, abs/1507.06527 (2015)

10. Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D.: Memory-based control with recur-
rent neural networks. CoRR, abs/1512.04455 (2015)

11. Peled, D., Iosti, S., Bensalem, S.: Control synthesis through deep learning. In:
Bartocci, E., Cleaveland, R., Grosu, R., Sokolsky, O. (eds.) From Reactive Systems
to Cyber-Physical Systems - Essays Dedicated to Scott A. Smolka on the Occasion
of His 65th Birthday, pp. 242–255. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31514-6 14

12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190 (1989)

https://doi.org/10.1007/978-3-642-15643-4_6
https://doi.org/10.1007/978-3-642-15643-4_6
https://doi.org/10.1007/978-3-030-31514-6_14
https://doi.org/10.1007/978-3-030-31514-6_14

472 S. Iosti et al.

13. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri,
USA, 22–24 October 1990, vol. II, pp. 746–757 (1990)

14. Safra, S.: On the complexity of omega-automata. In: 29th Annual Symposium on
Foundations of Computer Science, White Plains, New York, USA, 24–26 October
1988, pp. 319–327. IEEE Computer Society (1988)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive
Computation and Machine Learning, 2nd edn. MIT Press (2018)

16. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event
systems. MCSS 1(1), 13–30 (1988)

17. Zhu, P., Li, X., Poupart, P.: On improving deep reinforcement learning for pomdps.
CoRR, abs/1704.07978 (2017)

18. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183 (1998)

	Synthesizing Control for a System with Black Box Environment, Based on Deep Learning
	1 Introduction
	2 Preliminaries
	3 Controlling a System Interfacing with a Black Box
	4 Experiments
	5 Conclusions and Discussion
	References

