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Both Computer Vision and Artificial Intelligence are acquiring an important role in the industrial processes, 

complementing human work to aid and improve the production of goods. In the aeronautic (and especially aerostructures) 

field, for example, it is crucial to determine as soon as possible whether a part of CFRP (Carbon Fiber Reinforced Plastic) 

is acceptable or not. Such a check is currently performed by hand at Aerostructure Division by qualified personnel who 

carefully analyse many parts images. This process is not only time consuming, but it can also introduce delays in the 

production process, causing great economic losses. To complement and relieve the human work, here an automatic method 

is proposed that performs image analysis to separate key carbon fibre layers from background, and performs defect 

detection by computing specific figures on the extracted components. Results are made available to the personnel, who 

validate the final output. 

 

 

In the last decade, AI-enabled assisting tools have become 

more and more common in the daily life for aiding users in 

many ways. We find them inside smartphone applications 

that predict the user’s behaviour or understand the 

environment to enable enhanced interactions. Recently the 

automatic recognition of an individual through his facial 

appearance has gained a lot of interest for both the end user 

and the big industries, helping the former to perform actions 

such as unlocking his smartphone, and enabling the latter to 

ensure, for example, that only allowed personnel do access 

restricted areas. Computer Vision is the field of study that 

makes use of visual sensors to analyse and understand the 

environment, allowing applications such as face recognition 

to be used by both the categories of end users mentioned 

above. 

It is easy to understand that such a kind of technological 

development is not accepted so easily by industry, since it 

demands for stricter requirements. Being it pushed by its 

great success in many fields, CV has recently become a topic 

of interest for the industry too, which aims at leveraging new 

possibilities to complement and simplify the underlying 

industrial process. 

In this work, we present a CV algorithm that automatically 

detects composite parts defects by analysing images of 

specific item. More specifically, this work aims at aiding 

qualified personnel in the process of understanding whether a 

part of a Carbon Fiber Reinforced Plastic (CFRP) in 

Leonardo Aerostructures Division is affected by a critical 

defect. 

Currently the work is performed by the qualified personnel 

who must manually acquire and analyse images of each part 

of the CFRP-made structure and then decide about its 

acceptability by computing specific figures by hand on 

visually morphed parts of the image. This process is complex 

and time consuming. Also, it is often impractical to block the 

production chain that must go on even if it were not yet 

known whether the part in production will be then discarded 

or not. If the part ends up being not acceptable, it must be 

entirely disposed of, wasting a significant amount of time 

and resources. By using the CV algorithm to analyse the 

images, the qualified personnel is able to identify 

unacceptable parts since the earliest stages of the production 

chain and timely discard them, thus preventing from 

additional losses. Given the specific nature of the problem, 

the proposed method leverages the distinctive traits of the 

CFRP structure and separates the parts of interest from the 

background, by performing local brightness thresholding and 

connected component detection. Results are further 

processed to compute specific figures on each component, to 

understand its degree of distortion. They are then shown to 

the qualified personnel who always validate the output, 

allowing the needed high quality standards to be not affected 

by sporadic errors made by the module. 

The module has been developed and tested on a small image 

dataset collected an Aerostructures Plant where it is to be 

used. Images without defects together with images with 

different degrees of defection have been collected with their 

relevant annotations regarding where the defection is and 

what its defectiveness figure. 

The rest of the paper is organized as follows. First the related 

work is reviewed. Then the dataset is described and in depth 

details about the method are provided. Experiments and 

results follow and in the last section our conclusions are 

drawn.  
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RELATED WORK 
 

Computer Vision, and Machine Learning in general, are 

becoming to play an important role at many industries’. We 

find it in Automotive, Healthcare, Agriculture, Banks and 

Shops. This phenomenon is often referred to as “Industry 

4.0”, or “the fourth industrial revolution”. In this next step 

new technologies are introduced by industry to further 

enhance and automate its production processes. 

As it has been studied in [2], the increase in computing 

power and the development of actively developed learning 

frameworks have caused sensible increase in research 

productions that have in turn stimulated the transition from 

Industry 3.0 to Industry 4.0. 

The visual inspection of produced goods is one of the most 

common field for Computer Vision. Once a product 

completes a step along the production chain, it must be 

inspected by the personnel to ensure it reaches the given 

minimum quality standard. Computer Vision automates that 

kind of work by simply leveraging on images of the product. 

In [3], for example, the automatic optical measurement of an 

automobile component is performed. Various components 

are checked by first scanning a barcode to identify the 

product. A CV algorithm is employed to discover defects or 

damages. 

For the medical production industry, [4] CV employs a set of 

cameras to monitor the production of syringes. Each part of a 

syringe is checked against production specifications and 

defective parts are highlighted on the user’s application. 

In the Agricultural business, [5] studies of in-field variations 

in corn plant spacing and population enable to better estimate 

the seed spacing while planting it. Crop images are compared 

against known samples by using correlation windows and the 

final images are threshold to extract and measure the space 

occupation of each plant. 

In [6], a system to detect optical LED lenses is devised that 

uses block discrete cosine transform (BDCT), Hotelling 

statistics and grey clustering. Lens are checked for visual and 

dirt defects. The problem of understanding the state of 

construction of a building is studied in [7], where indoor 

images of buildings under construction are analysed to 

understand what the state of the construction process. To this 

extent, the algorithm helps detecting frames and insulation 

materials to estimate the progress of the works. Computer 

Vision algorithms are also employed in the industry to target 

the safety and health of employees. In [8], for example, a 

method to understand the hazard level of working 

environments is investigated. Thorough the use of multiple 

cameras, LIDARs and stereo cameras, 2D and 3D data are 

acquired and used to understand unsafe acts and conditions, 

unsafe acts based on location and movements of project 

entities and identify violation of safety and health rules 

regarding motions. The textile industry [9] uses Multi 

Resolution Combined Statistical and Spatial Frequency 

(MRCSF), Markov Random Field Matrix method (MRFM), 

Gray Level Weighted Matrix (GLWM) and Gray Level Co-

occurrence Matrix (GLCM) for automatic detection of 

defects in fabrics. The kind of defect is also detected. 

Finally, in [10] a comprehensive survey is presented, 

analysing both inspection techniques and inspected product. 

For inspection techniques, both the filtering-based and the 

learning-based approaches are studied. 

As for most of the previous methods, we employ a filtering-

based Computer Vision algorithm for the task of automatic 

composite parts defects detection. Our choice is motivated by 

two reasons: the lack of a big collection of annotated images 

to train a neural network with, and the simplicity of the 

devised filtering-based approach. In fact, the algorithm 

consists only on a smoothing pass, followed by an adaptive 

brightness thresholding and a morphological noise removal 

step. 

 

 

TASK AND DATASET 
 

In this section, the task of composite parts defect detection is 

first introduced. The current acquisition and validation 

protocol is then illustrated and finally it is described how the 

dataset used to study the problem has been collected. 

 

Figure 1 – Dimensions of a wrinkled ply 

 

Composite Parts Defect Detection Task 
The large composite parts of an airplane produced in 

Aerostructures Division consists of multiple sections 

produced by stacking flat layers of carbon fiber resins, called 

plies, which are then given the desired shape. This last 

operation can introduce in specific and well-known parts of 

the layers, some wrinkle shaped deformations or distortions 

that, depending on their severity, can lead to structural 

damages, which of course must be avoided. 

The wrinkle severity figure is one of the factors that play an 

important role in deciding whether a whole section can 

continue the production process or it cannot. Such figure is 

computed as follows: 

𝑤𝑟𝑖𝑛𝑘𝑙𝑒 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝐿𝑚

𝐷𝑚
 (1) 

where Lm and Dm are the width and height dimensions 

respectively of the wrinkle. Figure 1 shows how these figures 

are measured with respect of a given wrinkled ply. The lower 

is the wrinkle severity factor, the higher the risk of it 

suffering structural damage. Studies have defined a specific 

threshold under which the ply is considered “wrinkled” 

because it is affected by a high severity deformation, and as 

such the whole part it belongs must be discarded. 

The task at hand is to first identify and extract all the 

different plies in a given image and second to measure the 

wrinkle severity for the wrinkle that may, or may not, be 

present in the last (bottom) ply. As it is explained in the 

following paragraph and can be seen in Figure 2, not all the 

plies are equally visible in the acquired images. Here we 

focus only on the recognition of the more visible, which from 

now on is referred to as the bright ones. 

 

Acquisition and Validation Protocol 
A large part of at an Aerostructures Plant can be produced in 

many versions and each version, for example, has two sides: 
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forward side and aft side. Depending on the part-version-side 

combination there are specific locations where multiple 

images have to be acquired. For each location at least 3 

images are taken. Depending on the section produced, the 

acquired images of each section can vary between 150 and 

300, which must be all analysed. 

The acquisition is currently performed by using a 5Mpixel 

hand-sized USB microscope that produces images with 

1280x960 pixels resolution. Images are then saved in the 

JPEG format by the producer proprietary acquisition 

software. The acquisition process produces a number of 

images similar to the one shown in Figure 2. Here we can 

distinguish the different CFRP plies, along with the 

deformation present around the middle part of the last ply. 

 
Figure 2 – Example of acquired image 

Qualified personnel then has to analyse images - one at a 

time - and manually compute the wrinkle severity figure, to 

determine whether the part is allowed to continue the 

production chain or it must be entirely discarded. This 

process is currently performed by first measuring width and 

height of the wrinkle on the screen by using a virtual ruler, 

that is by selecting a starting and an ending point onto the 

image. The software outputs the estimated measure between 

the points. Then the Figure is manually computed and results 

are drawn on the original image by using an image editing 

software. Figure 3 shows the measure result for the same 

image shown in Figure 2.  

 
Figure 3 – Example of wrinkle severity annotation 

This validation protocol suffers from several pints of 

weakness. It lacks accuracy, since the exact location of the 

points used by the virtual ruler can slightly vary between 

operators. It takes time to perform a single measurement, as 

it cannot be carried out directly on the part during 

acquisition. Off-line measurement is performed on only 3 

images per location in case more than 3 have been acquired; 

this process is as well carried out by hand. 

 

Dataset 
Images such as the one in Figure 2 are normally acquired and 

are stored at the Aerostructures Plants by qualified personnel, 

every time a new part enters the production chain. We 

leveraged this database to create the dataset used to depict 

the CV method and to test its performances. The database 

consists of tens thousands images but, thanks to the high 

quality standards of the production chain processes, only a 

small fraction exhibits defects important enough to be 

measured and labelled by the qualified personnel. Labels 

consist of the Lm and Dm measures that are necessary to 

compute the wrinkle severity figure. From this subset, a 

subset of images is extracted with different degrees of 

defection (both under and above the critical threshold) and 

images with no defection or with level of distortion so low 

that have been deemed not to be critical even with not any 

need for measuring it through the manual measurement 

process. Moreover, images have been acquired from different 

locations of specific part selected. 

 

 

METHOD 
 

As described in the previous paragraph, the annotated dataset 

is composed by a small number of images due to the intrinsic 

nature of the problem. For this reason, a Deep Learning 

approach was not feasible since data were not enough to 

perform the training of the network. A simple but yet 

effective classical CV approach was then devised which is 

composed of two parts. The first part, the ply extraction, 

analyses the image to recognize the bright plies; the second 

part, the distortion measurement, computes the distortion 

Figure 6 or a given ply.  

 

Preprocessing 
The images obtained with the previously described 

acquisition process may contain other content that the plies 

to measure. Such content must be removed before they 

undergo the automatic measurement process by “cropping 

out” everything that is not related to the plies. 

 

Ply Extraction 
The algorithm proceeds as follows:  

1. the image is first converted to black and white and 

filtered using a Savitzky-Golay [1] smoothing filter to 

remove image quality impurities;  

2. the smoothed image is thresholded by using a local 

variable threshold where each pixel is compared against 

the mean of its local window; 

3. small impurities are removed by applying the 

morphological operators of opening and closing; 

4. bright plies are isolated by looking for connected 

components that have a pixel area bigger than a given 

minimum threshold;  

5. if present, the last ply is taken into consideration and is 

passed to the measuring algorithm. An example result 

of this phase is shown in Figure 4. 

 
Distortion Measurement 
Distortion measurement is performed once the bright plies 

have been isolated in the image, for a single selected ply. The 

algorithm proceeds as follows: 

1. find the leftmost and rightmost coordinates of the lower 



 POLARIS INNOVATION JOURNAL 

 

contour of the ply; 

2. compute the segment between those two points and 

compute the respective angle, as shown in Figure 5 

(top); 

3. if the angle is below a threshold compute the distance 

between the lower contour and the segment; 

4. find the longest sub-segment that has distance greater 

than 1 pixel and set its length as the width dimension to 

compute the final Figure 1 and set the maximum 

distance of the sub-segment from the bottom contour as 

the height dimension to compute the final figure, as 

shown in Figure 5 (bottom); 

5. set the wrinkle severity Figure 1 as the ratio of width 

and height dimensions. 

 

Figure 4 – Example result of ply extraction 

 

Figure 5 – Example of the distortion measurement process: (top) 

baseline detection; (bottom) width and height measurements 

The resulting Figure is then drawn on the input image and 

shown to the operator as in Figure 3. If at any point of the 

algorithm, some conditions are not met, for example if no ply 

is found during the ply extraction phase or the segment angle 

computed during the distortion measurement phase is over 

the predefined threshold, the operator is warned so that 

manual measurement can still be performed. This precaution 

is fundamental to preserve high-quality standards, preventing 

from leaving anomalous cases not measured. 

 

 

EXPERIMENTS 
 
This paragraph reports on the qualitative experiments 

performed on the small dataset we described in the Task and 

Dataset section. 

Since our method does not require any training, the whole 

dataset has been used to evaluate qualitatively the proposed 

method. Here qualitative results are shown of the ply 

extraction phase and the distortion measurement phase. The 

wrinkle severity Figure is impressed on each image. 

Four cases are reported that are shown in Figure 6, G, H and 

I, with different degrees of wrinkle severity.  

Figure 6 shows a relatively small wrinkle that is correctly 

detected by our method. The ply extraction phase correctly 

detects all the bright plies and the distortion measurement 

phase measures the wrinkle severity correctly. Only the third 

bright ply from top is not recognised, due to contrast 

attenuation on the right end.  

Figure 7 shows another successful example where the 

wrinkle severity is more pronounced. The ply extraction 

phase extracts most of the bright plies. Again, the missing 

ones are the ones for which the contrast level becomes very 

low around edges of the image. The distortion measurement 

phase is again able to measure correctly the wrinkle severity, 

even with more than one wrinkle on the ply. This is an 

expected behaviour and is a direct consequence of the 

distortion measurement algorithm. In fact, the algorithm 

measures the length of the wrinkle that is relative to the 

baseline of the whole ply. In this example, the more severe 

wrinkle is the one that distorts the ply the most and features 

the longest sub-segment distance. 

In Figure 8, the bright plies are all detected correctly during 

the ply extraction phase. The distortion measurement phase 

performs an almost prefect measure, but due to the image 

suffering from slight blur effect, the sub-segment width 

results a little shorter than it should be.  

Finally, in Figure 9, an unsuccessful case is reported, in 

which the ply extraction phase is not able to detect correctly 

the last bright ply due to very low contrast zones in the 

wrinkle location. The method is able to recognise this case 

and does not perform any measurement. The qualified 

personnel is informed and can perform manually the same 

measurement.  
 

 

CONCLUSION 
 

This work proposes a method to detect automatically defects 

in large composite part. The presented method leverages on 

Computer Vision techniques to analyse images of specific 

locations of the parts. It is able to first detect and extract each 

of the brightest carbon fibre layers the parts are made of. It 

then analyses the lower most bright layer, to detect the 

presence of a wrinkle defect and to extract a severity measure 

related to the detected deformation. The result of such 

processing is made available to the qualified personnel, who 

however are always responsible for validating the results 

obtained. Moreover, failure cases are detected and reported 

to the user. 

To depict the method, a dataset of images from the database 

of already collected acquisitions in an Aerostructures Plant 

has been first created. Then the method has been developed 

and tested on a subset of that dataset, to perform experiments 

aimed to validate the predicted wrinkle severity. 

Due to the nature of the problem and to the relatively small 
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size of the dataset, a local brightness thresholding and its 

connected component detection method has been developed 

instead of a Neural Network based method. 

Results show the successful approach of such a method that 

provides good estimation of the wrinkle severity figure in 

most of the tested cases. Even in case no wrinkle is 

detectable, the qualified personnel are informed and the 

measure can be performed manually. 

 

 

Stefano Corvaglia:  

stefano.corvaglia@leonardocompany.com 

  

Figure 6 – Correct measurement of the wrinkle severity figure  

 

 Figure 7 - Correct measurement of the wrinkle severity figure when more than one wrinkle is present 

 

Figure 8 – Incorrect Measurement of wrinkle severity on a blurred image 

 

Figure 9 – Incorrect detection of last ply. Wrinkle severity Figure is not performed in this case  
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