Semantic enrichment of spatio-temporal production data to determine lead times for manufacturing simulation – 2019 Winter Simulation Conference
Semantic enrichment of spatio-temporal production data to determine lead times for manufacturing simulation

Carina Mieth | TRUMPF Group, Ditzingen, Germany
1. Motivation
 • introduction
 • objective of this contribution

2. Fundamentals
 • real-time indoor localization systems (RTILS)
 • semantic enrichment
 • related work

3. Contribution
 • proposed approaches
 • comparison of the algorithms
 • sensor fusion concept

4. Conclusion
 • summary
 • future work
 • references
Introduction

Challenges with simulation's input data:

- simulation success relies on high-quality data (Wenzel et al. 2007)
- data gathering and processing is time-consuming
- poor data quality causes problems with credibility (Onggo et al. 2013)

This content had to be removed for online publication.
Introduction

Increasing dissemination of cyber-physical systems:

- valuable proposition of new data sources
- considered essential for digital twins (Yang et al. 2017; Shao and Kibira 2018; Srewil and Scherer 2017)
- the analysis of spatio-temporal data has the potential to discover hidden patterns that result in non-trivial insights (Nikitopoulos et al. 2018)
Flashback to:

RTILS framework

data model for sheet metal production

improvements of data quality

52nd CIRP Conference on Manufacturing Systems
Framework for the usage of data from real-time indoor localization systems to derive inputs for manufacturing simulation
Carina Mieth*, Anne Meyerb, Michael Henkeb

*TRUMPF Werkzeugmaschinen GmbH & Co. KG, Johann-Maus-Straße 2, 71254 Ditzingen, Germany
b TU Dortmund university, Chair of Enterprise Logistics, Leopold-Euler-Straße 5, Dortmund, Germany

Data Quality Dimensions

Motivation
Objective of this contribution

Each production order is tracked with the RTILS, and the process sequence and layout are known. Three algorithms are presented for the semantic enrichment, and semantic trajectories can be used for the calculation of lead time distributions.
Real-time Indoor Localization Systems

- here: based on ultra-wide band technology
 - bandwidth > 500 MHz
 - frequencies 3.1-10.6 GHz
 - TDOA / RTOF

- stationary devices:
 - satellites
 - industrial computer

- mobile devices:
 - markers
Semantic Enrichment

is the process of annotating spatio-temporal trajectories with meaningful context information (Arslan et al. 2018)

context information from...

semantic spatio-temporal trajectories

\((x, y, t, ID_{marker}, ID_{order}, C)\)

Own illustration taken from Mieth et al. 2019
Related Work

Previous approaches consider radio-frequency identification (indoor) or GPS data (outdoor):

- **Zhong et al. (2014)**: mined operating times from RFID-enabled worker data
- **Srewil and Scherer 2017**: enriched RFID-data with location context of construction sites
- **Rashid et al. 2017**: worker tracking at construction sites for training a hidden markov model for trajectory prediction which is used to calculate risk index for workers (location-based safety alerts)

Open Challenges

- **UWB-based RTILS production data ≠ RFID data**
 - **Yan et al. 2013**: techniques for semantic events inferred from raw GPS-like data should be developed
 - **Zheng 2015**: trajectory data mining applications: movements of people, transportation vehicles, animals and natural phenomena → manufacturing not mentioned!
Related Work

approaches to determine stay points in GPS-data

- Li et al. 2008: stay point detection algorithm → no semantics
- Palma et al. 2008: a clustering-based approach with adaptive thresholds, clusters are mapped on polygons
- Rocha et al. 2010: a direction-based spatio-temporal clustering method (frequent changes = POI)
- Alvares et al. 2010: trajectory are split whenever borders of areas are crossed → not robust

Graaff et al. 2016: use accuracy of the location samples, reductions in speed, changes in direction and projection of signals onto parcel polygons

There are no approaches for production environments

Difficulties: outdoor < indoor → proximity, adjacency, overlap signal interferences → inherent inaccuracy of the data (Richly 2018)
Proposed approaches

Online Semantic Annotation (real-time)
- based on the distance to points of interest (POI)
- based on areas of interest (AOI)

Offline Semantic Annotation (when the whole trajectory is known)
- trajectory segmentation as a classification problem (CP)
Algorithm for Online Semantic Annotation → based on Points of Interest (POI)

Idea: use $R_j(t, P_i) := \frac{1}{d_{o_j,P_i}(t)} + \sum_{f=1}^{F} \frac{1}{w_fd_{o_j,P_i(t-f)}}$ as discriminator for the allocation of a measurement

- P_i refers to a location (x_i, y_i) on the shopfloor with semantic meaning (e.g. machine or workplace)
- $d_{o_j,P_i}(t)$ euclidean distance between production order o_j and POI P_i
- pseudo probability: relating each current rating to the sum of all ratings at the time

Points of interest P_1 and P_2 with the trajectory of a production order o_j
Algorithm for Online Semantic Annotation
→ based on Areas of Interest (AOI)

Idea: allocate measurements to AOIs, if the majority of the last F measurements are inside

- \(A_i \) refers to an arbitrarily shaped area on the shopfloor that has a semantic meaning
 (e.g. work area around a machine or a storage)

\[
PIA((x,y),A_i) = \begin{cases}
1 & \text{inside} \\
0 & \text{on border} \\
-1 & \text{outside}
\end{cases}
\]
the discriminator is the point-in-area (PIA) test
that checks if the measured point \((x,y)\) is in \(A_i \)

- if the sum of all values returned by the PIA-test inside the window size \(F \) is greater or equal zero → location change
Pseudocode can be found in the paper ;)

<table>
<thead>
<tr>
<th>Algorithm 1: Pseudocode for the allocation of measurements to points of interest (POI).</th>
</tr>
</thead>
</table>
| **Input**: spatio-temporal trajectories S_j for each production order o_j, window size F, weighting factors w_1, \ldots, w_F, points of interest $P_i \forall i = 1 \ldots N$
Output: semantic trajectory S_{o_j}, event log
For each $t = 1 \ldots T$ do
 Check plausibility constraints for measurement $s_j(t)$
 For each production order o_j do
 For each point of interest P_i do
 If $t \leq F$ then
 $R_j(t, P_i) := \frac{1}{w_{P_i}}$;
 // initialization of first ratings
 Else
 $R_j(t, P_i) := \frac{1}{w_{P_i}} + \sum_{f=1}^{F-1} \frac{1}{w_{P_i,f}(t-f)}$;
 // rating function
 Assign P_i with $\max(R_j(t, P_i))$ to $S_{o_j}(t)$;
 If $P_i(t) \neq P_i(t-1)$ then
 Save timestamp to eventlog;
 // location has changed
 Save $S_{o_j}(t)$, event log.

Algorithm 2: Pseudocode for the allocation of measurements to areas of interests (AOI). |
| **Input**: trajectories S_j for each production order o_j, window size F, disjoint areas of interest $A_i \forall i = 1 \ldots N$
Output: semantic trajectory S_{o_j}, event log
For each $t = 1 \ldots T$ do
 Check plausibility constraints for measurement $s_j(t)$
 For each production order o_j do
 For each area of interest A_i do
 If $(t > F)$ then
 If $\text{PIA}(S_j(t), A_i) = 1$ then
 If $A_i(t) \neq A_i(t-1)$ then
 if $\sum_{j=1}^{F} \text{PIA}(S_j(t-f), A_i) \geq 0$ then
 Assign event at $t - \left[\frac{F}{2} \right]$ to eventlog;
 // location has changed
 Assign A_i to $S_{o_j}(t)$;
 // assign measurement
 Assign A_i to $S_{o_j}(t-1) \ldots S_{o_j}(t - \left[\frac{F}{2} \right])$;
 // update previous ones
 Else
 Assign previously identified area of interest A_i at $(t-1)$ to $S_{o_j}(t)$;
 Else
 Assign previously identified area of interest A_i at $(t-1)$ to $S_{o_j}(t)$;
 Else
 If $\text{PIA}(S_j(t), A_i) = 0$ then
 Assign previously identified area of interest A_i at $(t-1)$ to $S_{o_j}(t)$;
 Else
 If $\text{PIA}(S_j(t), A_i) = 1$ then
 Assign area of interest A_i to $S_{o_j}(t)$;
 // initialization
 // location has changed
 Save $S_{o_j}(t)$, event log.

Choosing the “right” window size F
Definition of POIs is easy
AOIs sometimes tricky
Both definitions influence the results
Classification Problem (CP)

Idea: each measurement is assigned to a process class

- decision variable k_t for each position measurement $s_j(t) \rightarrow$ process class $V_t \in V$
- two possible error functions:
 \[e_j(t) = \begin{cases}
 0 & \text{PIA}^*(t) = k_t \\
 1 & \text{PIA}^*(t) \neq k_t
 \end{cases} \text{ or } e_j(t) = 1 - p(t) \]
- transition function
 \[u(k_t, k_{t+1}) = \begin{cases}
 0 & \text{no change detected: } k_t = k_{t+1} \\
 1 & \text{change detected: } k_t \neq k_{t+1}
 \end{cases} \]

Minimize
\[\sum_{t=1}^{T} e_j(t) \] assignment error should be minimized w.r.t.

1st constraint
\[(k_t, k_{t+1}) \in Arc^* \] ensures that the sequence of processes is not violated

2nd constraint
\[\sum_{t=1}^{T-1} u(k_t, k_{t+1}) = 2 \cdot |V^*| - 1 \] is for the segmentation of trajectories in the number of allowed segments
Comparison of the Algorithms

Cycle-free graph is guaranteed by design of the constraints
- can handle adjacency & overlapping
- rework can be identified → number of classes can be adjusted
Sensor Fusion Concept

combining knowledge from different sensor types

With existing approaches it is only possible to detect time shares between events that correspond to a change in location.

Sometimes it is also of interest to split these times shares into smaller parts.

Handling events can separate the trajectory into suitable segments (e.g. accelerometer or magnetometer measurements).
Summary

- introduction of semantic enrichment
- presentation of three approaches for semantic enrichment (online and offline)
- comparison of these algorithms
- presentation of a sensor fusion concept

Future work

- use real-world data set for validation of proposed algorithms
- derive other simulation inputs from RTILS data
References

References

References

How to calculate lead time distributions from semantic trajectories

\[(x, y, t, ID_{marker}, ID_{order}, C)\]
Figure 2: Manufacturing domain ontology for the semantic enrichment of trajectory from RTILS.
Graph of the production process

For a more reliable assignment of the measurements to the points or areas of interest, technological restrictions will be considered in the form of logical operation sequences. All possible operation sequences within the production system are part of a directed graph $G = (V, Arc)$. Each node V_i in the node set V represents an operation that is performed at the point or area of interest P_i or A_i, respectively. The arc set Arc contains all directed arcs (V_a, V_b) that always contain two logically sequentially executable production operations. A path $G_j \in G$ corresponds to a sequence of operations that a production order o_j passes through. Let $G^* = (V^*, Arc^*)$ be an extension of G_j that results by adding edges that join each vertex of the path to itself (loops).